(, corelight

Corelight-update

Updated Mar 20, 2025

© 2015-2025 Corelight i

CONTENTS

1 QuickStart - new install 2
1.1 Systemrequirements L e e e e e e 2
1.2 Installation OVETVIEW L e e e e e e e e e e e 2
2 QuickStart - upgrade 8
2.1 Systemrequirementst . e e e e e e e e e e e e e e e e 8
2.2 Upgrade overviewl e e e 8
3 Global configuration 10
3.1 Corelight-update service settings L e 10
3.2 Network communication Settings L oL e e e e e e e e e 11
3.3 Configuration Settings e e e e e e e e e 12
4 Policy configuration 18
4.1 POlicy SOUICES o o i it e e e e e 18
4.2 Policy inventory Settings o i i e e e e e e e e e e e e e e e 22
4.3 Suricata configuration L e e e e e e e e e e e e 28
4.4 Intel managemento e 36
4.5 Inputmanagement e e e 37
4.6 YARA management e e e e e e e e e 38
4.7 Third-party integrations Settingso e e e e e 39
5 References 78
5.1 Internal References e 78
5.2 Zeek package references e e e e e e e e 85
5.3 Third-party configuration guides L. e e e 95
6 Corelight-update Release Notes 97
6.1 v1.14.1 March 2025) o L e e 97
6.2 v1.14.0 March 2025) L e e e 97
6.3 v1.13.1 (January 2025) e e e e e e e e e e e 98
6.4 v1.13.0 (November 2024) e e e e 98
6.5 vI1.12.0 (September 2024) L e e 98
6.6 VvI.1LO(August2024) e e e 98
6.7 v1.10.1 (April 2024) o e e 99
6.8 vI.10.0 (April 2024) o e e 99
6.9 v1.94 (March2024) e e e 99
6.10 v1.9.2 (January 2024) e e e e 99
6.11 v1.9.0 January 2024) L e e e e 99
6.12 v1.8.1 (September 2023) e e e e e e e e e e e e e 100
6.13 v1.8.0 (September 2023) e e e 100
i © 2015-2025 Corelight

6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29

VE.7.3 (August 2023) . . . o e e e e e e e e e e e e e e e e e e 100

VI 7.2 (August 2023) . . o o e e e e e e e e e e e e e e e 100
VET7.1 (August 2023) . . o . o e e e e e e e e e 101
v1.7.0 July 2023) e e e 101
v1.6.3 (July 2023) e 101
VE.6.2 (June 2023) e e e e e e e e e e e e e 101
V6.1 (May 2023) e e e e e e e e e e e e e e e e e e 102
v1.6.0 (March 2023) o e e e e e e e e e 102
v1.5.0 (February 2023) L e e e 102
v0.4.1 (February 2023) o L e e e e e e 102
v1.4.0 January 2023) L e e e 103
v1.3.0 (November 2022) o o e e e e e e e e e e e e e 104
v1.2.1 (November 2022) o e e e e e e e e 104
vI.2.0 (October 2022) e e e e e e e e e e e e e e e e e e e 104
VI.1.0 (October 2022) e e e e e e e e e e e e 105
v1.0.1 (October 2022) e e e e e e e e e e e e e 105

© 2015-2025 Corelight iiii

Corelight-update, Release 1.14.1

The primary purpose of the Corelight-update utility is to automate and simplify the workflow of collecting data from
disparate sources of dynamic content for Corelight Sensors by integrating into your existing CI/CD process.

This data includes threat intel, Suricata rulesets, vulnerability data, Zeek packages and other Input Framework data.
The data can come from pre-formatted local sources, pre-formatted remote sources, or third-part integrations.

There’s no need for additional tools if you integrate Corelight-update with your CI/CD or change control process to
manage Suricata rulesets, Intel files, Input files or Zeek package bundles.

In addition to collecting and formatting data sources, Corelight-update can optionally apply Corelight best practices
to Suricata rulesets, extracting indicators from atomic Suricata rules and creating Zeek Intel files. The corresponding
Suricata rules are then disabled, reducing the workload of the Suricata process.

Corelight-update natively supports the concept of hierarchical processing with a single global configuration and mul-
tiple policy configurations.

The output of each policy is a single Intel file, a single Suricata ruleset, a single package bundle, and multiple Input
files ready to be consumed by a Corelight Sensor.

A secondary function of Corelight-update is to push content to Corelight Sensors. It supports ALL types of sensors,
both Fleet-managed and stand-alone.

CONTENTS © 2015-2025 Corelight 1

CHAPTER
ONE

QUICKSTART - NEW INSTALL

The Corelight-update utility can run as a service at a scheduled intervals, if enabled, to check for updates to the con-
figured data sources, and distribute updated content to the Fleet Manager policies and sensors.

1.1 System requirements

The minimum system requirements are:
* An x86_64 or ARM64 processor.
* 4 GB memory.
* A host running a Linux OS.
» Network connectivity to the Internet, or to an internal-facing threat intelligence data repository.

* To push content to your sensors, or to Fleet Manager, network connectivity to the management interface is re-
quired.

1.2 Installation overview

Select a host to install the Corelight-update utility. If you have a Corelight Fleet Manager installation, Corelight-update
can be run on the same host.

1. Set up the Corelight stable package repository

2. Install Corelight-update

3. Add the corelight-update group to existing users (optional)
4. Configure Corelight-update

5. Add proxy configuration (optional)

6. Run Corelight-update

2 © 2015-2025 Corelight

Corelight-update, Release 1.14.1

1.2.1 1. Set up the Corelight stable package repository

Bash script - deb Installation

1. Run the script using:

(Optional) To download the script before running it:

Bash script - rpm Installation

1. Run the script using:

(Optional) To download the script before running it:

Manual deb Installation

1. Refresh the package cache:

2. If you are running Debian, install debian-archive-keyring so that official Debian repositories are verified.
Ubuntu installations can skip this step.

3. Ensure the required tools (curl, gpg, apt-transport-https) are installed before proceeding:

4. To install a deb repo, you need to install the GPG key that is used to sign repository metadata. Use a utility called
apt-key.

5. Verify the file named /etc/apt/sources.list.d/corelight_stable.list contains the repository config-
uration below.

1.2. Installation overview © 2015-2025 Corelight 3

Corelight-update, Release 1.14.1

In the example below, check that the strings ubuntu and trusty represent your Linux distribution and
version:

Valid options for os and dist parameters can be found in Packagecloud’s supported OS list.

6. Update the local APT cache:

Manual rpm Installation

1. Install pygpgme, a package that allows yum to handle gpg signatures, and a package called yum-utils that
contains the tools you need for installing source RPMs.

You might need to install the EPEL repository for your system to install these packages. If you do not
install pygpgme, GPG verification will not work.

2. Create a file named /etc/yum.repos.d/corelight_stable.repo that contains the repository

configuration below.
Replace el and 6 in the baseurl= path with your Linux distribution and version. Valid options for os and

dist parameters can be found in the supported OS list in the docs.

3. Update the local yum cache:

4 © 2015-2025 Corelight Chapter 1. QuickStart - new install

https://packagecloud.io/docs#os_distro_version
https://packagecloud.io/docs#os_distro_version

Corelight-update, Release 1.14.1

1.2.2 2. Install Corelight-update

Debian

RHEL

1.2.3 3. Add the corelight-update group to existing users (optional)

As part of the installation, a system user and group are added to the OS to manage the Corelight-update service. All
files and directories that are created for Corelight-update will belong to the user corelight-update, and the group
corelight-update.

To avoid using sudo when running corelight-update commands, you can add your user to the corelight-update
group. For example, use this command to append the corelight-update group to the users assigned groups:

Tip: Changes made with the usermod command do not take effect in the current session. Logging out and in again
will apply the changes.

1.2.4 4. Configure Corelight-update
The Corelight-update utility uses a configuration database to track and maintain the sensor inventory, the global service
configuration and interval, the policy assignments, and the integrations.

To configure Corelight-update, start with the sample file as a template, and fill-in the various configuration options.
Once you’ve completed filling in your configuration file, use the file to update the policy defined in the Corelight-update
configuration database.

A default policy named defaultPolicy is created automatically as part of the installation process. The default policy is
functional, but also optional, and can be replaced with custom named policies.

There is a configuration sample file provided with the default policy:

Attention: To use Corelight-update for Fleet-managed sensors, you must associate the Fleet Manager sensor policy
or suricata policy name with the Corelight-update policy name. See 4.1. Change the policy name (optional) below
for the options available.

1.2. Installation overview © 2015-2025 Corelight 5

Corelight-update, Release 1.14.1

1.2.4.1 4.1 Change the policy hame (optional)

For Fleet-managed sensors, Corelight-update will use the Fleet Manager sensor policy name to collect a group of
sensors that it should deploy “Intel” and “Input” content to. Suricata rulesets and package bundles are uploaded to
Fleet Manager policies directly.

As of Fleet Manager v27.8, Fleet Manager uses separate policies for sensors and Suricata rulesets.
Corelight-update provides a couple options to associate the Corelight-update policy to a Fleet Manager policies:

1. Use the same name for the Corelight-update policy, the Fleet Manager sensor policy and Fleet Manager suricata
policy.

2. When adding your Fleet Manager details to the Corelight-update policy inventory, provide the Fleet Manager
sensor policy name in the Corelight-update sensor_policy: field, and the Fleet Manager suricata policy name
in the Corelight-update suricata_policy: field. See 4.2 Customize a policy (optional) below.

3. Change the Corelight-update policy name to match the existing Fleet Manager sensor and suricata policy name
(assuming they have the same name).

For example, to remove the default Corelight-update policy, and create a new policy named “myFleet-
Policy”:

1. Remove the default policy:

2. Add a new policy named “myFleetPolicy”:

3. Verify the policy is defined:

Once the new policy is created, a configuration sample file is created, and placed into a folder with the
policy name. For example: /etc/corelight-update/configs/myFleetPolicy/db-config.
yaml.

Note: If the sensor_policy field is left blank or the suricata_policy field is left blank, it will use the name of
the Corelight-update policy for the empty field.

1.2.4.2 4.2 Customize a policy (optional)
Use a configuration example file to create a customized configuration for Corelight-update that defines the Fleet Man-
ager details, sensor inventory, the Corelight-update service configuration, the content assignments, and integrations.

To view a sample policy configuration yaml that enables and pushes the default ETOpen and Corelight suricata rulesets
to a single, unmanaged sensor, see cupdate_default_policySources.

1. Add your sensors to the Corelight-update policy inventory. For information on configuring the sensor inventory,
and the use of encrypted passwords, see Policy inventory settings.

2. Configure the content you want to deploy to your sensors in the Corelight-update policy configuration. This
content can include threat intel, Zeek input files and package bundles, and Suricata rulesets. See Policy sources.

3. Configure a custom third-party integration that provides support for a vendor-specific threat source, including
source-based customizations and authentication. See Third-party integrations settings.

6 © 2015-2025 Corelight Chapter 1. QuickStart - new install

Corelight-update, Release 1.14.1

1.2.4.3 4.3 Customize global settings (optional)

1. Customize the default interval settings for data downloading and processing, enabling global integrations, mod-
ifying the web service, or deploying global Suricata configuration files. See Configuration settings.

2. Customize the default network communication between Corelight-update and Fleet Manager or sensors, includ-
ing how much time to wait for a status of a file upload. See Network communication settings.

1.2.5 5. Add proxy configuration (optional)

See Using a proxy with Corelight-update for instructions.

1.2.6 6. Run Corelight-update

Run corelight-update using the CLI commands, or enable the service. See Corelight-update Service.

For additional corelight-update command options, see CLI commands.

1.2. Installation overview © 2015-2025 Corelight 7

CHAPTER
TWO

QUICKSTART - UPGRADE

The Corelight-update utility can run as a service at a scheduled intervals, if enabled, to check for updates to the con-
figured data sources, and distribute updated content to the Fleet Manager policies and sensors.

Attention: On completion of the upgrade, if you have pre-1.0 release policy files, they must be manually imported
into the configuration database. See CLI commands for details on the import command.

2.1 System requirements

For the latest system requirements, see System requirements in the references.

2.2 Upgrade overview

Set up the Corelight package repository on the host OS if required. See QuickStart - new install for instructions.
1. Upgrade Corelight-update
2. (Optional) Configure new Corelight-update features.

3. (Optional) For customers who haven’t done so previously, add the “corelight-update” group to existing
users.

2.2.1 Upgrade corelight-update

Debian

8 © 2015-2025 Corelight

Corelight-update, Release 1.14.1

RHEL

2.2.2 Configure new Corelight-update features (optional)

When Corelight-update gets upgraded, any existing database will automatically be upgraded.

Use the CLI command corelight-update show -policy <policy name> to identify new configuration options
or corelight-update show -policy <policy name> -file /etc/corelight-update/config/<policy
name>/db-config.yaml to replace the existing file with the new format. Then modify as necessary.

Once you’ve completed filling in your configuration file, use the file to update the policy defined in the Corelight-update
configuration database.

When updating policies, you can either supply an entire policy configuration or only the sections you want to update.

Warning: When updating from a full or partial configuration, any config section provided must have all none-zero
fields provided. Any missing fields will be automatically configured to their zero value.

Attention: When Corelight-update gets installed for the first time, it will automatically create the database, a
default Global configuration, and a default policy named “defaultPolicy”.

If the corelight-update.db is deleted, a new corelight-update.db will be created the next time the service
runs, with a default Global configuration. However, no default policies are created.

2.2. Upgrade overview © 2015-2025 Corelight 9

CHAPTER
THREE

GLOBAL CONFIGURATION

Corelight-update manages configurations and settings at a policy-level, and at a global-level.

Global settings include:

3.1 Corelight-update service settings

3.1.1 Web service

The web service provides local web access to the documentation, and all of the content created and managed by
Corelight-update. The web service is enabled by default, and is optional.

Note: Updating the default certificate is recommended.

3.1.2 Service interval

In some cases it is useful to disable the processing feeds and only have the web service enabled, or modify the default
interval for processing data feeds.

When this interval is triggered,
* All caches are updated.
» All local data sources are copied to their respective working folders.
» All remote data sources are copied to their respective working folders.
Additionally, the individual state history for each enabled integration is checked each interval.

* If the integration interval time has lapsed, it processes the integration.

10 © 2015-2025 Corelight

Corelight-update, Release 1.14.1

« If the interval has not lapsed, the integration is skipped until the next cycle.
« If the interval is set to 0, the integrations will be processed each cycle.
For more details, see Order of operations

For details on updating the web service or service interval, see Updating the Global configuration

Attention: The web service and service interval only apply when running Corelight-update as a service. Any
changes to these settings require a service restart to take affect.

3.2 Network communication settings

Use the global network configuration to modify the connection timeout variables between Corelight-update and the
sensors, a Fleet Manager instance, or a data source to be downloaded. The sensor_timeout_settings are used to
manage communication between Corelight-update and a sensor or Fleet Manager instance. The download_timeout_
settings are used to manage communication between Corelight-update and a data source to download.

3.2.1 Updating the Global network config

Changes can be made to the global network configuration using the Corelight-update CLI command with the
--network-settings flag.

Updating via --network-settings

The Corelight-update CLI command supports updating the Global Network Configuration directly using the
--network-settings flag.

* Multiple settings can be updated using a single command.

e Update nested settings by using a “..
seconds=10.

For example, sensor_timeout_settings.tls_handshake_

* Any setting can be updated using a key=value pair.

For example:

See the next section for a list of fields that can be updated directly.

After updating a configuration, verify the global network configuration using the console. For example:

3.2. Network communication settings ©2015-2025 Corelight 11

Corelight-update, Release 1.14.1

3.2.2 Complete global network settings

3.3 Configuration settings

3.3.1 General settings

3.3.1.1 Additional logging options

If additional logging detail is needed, enable verbose logging. This setting is in addition to the CLI debugging option.

3.3.1.2 Experimental features

There are currently no experimental features available in Corelight-update.

12 © 2015-2025 Corelight Chapter 3. Global configuration

Corelight-update, Release 1.14.1

3.3.1.3 Auto-updating policy settings

You can configure Corelight-update to automatically update a policy using a pre-selected configuration file name, and
directory path. When auto_updating_policies is enabled, Corelight-update monitors the directory path /etc/
corelight-update/configs/<policy_name>/ for a file as defined in £ilename.

On each service interval, Corelight-update checks each path for a policy configuration file, and applies that configuration
to the policy. This setting is enabled by default.

Note: When auto_updating_policies is enabled, a configuration file matching the filename setting is required
in each policy directory: /etc/corelight-update/configs/<policy_name>/

3.3.1.4 Pushing content to sensors in parallel

By default, Corelight-update will deploy content updates to the sensors concurrently. Corelight-update will open a
connection to multiple sensors in a policy, push updated content, and cycle to the next sensor, up to the parallel_
push_limit setting.

Content updates are performed in a specified order. To review the order of operations, see Push content for policies.
The default for parallel_push_limit is 10 sensors.

3.3.2 Global-level data sources

Corelight-update supports applying a limited selection of data sources at the Global level.

3.3.2.1 GeolP database

Enables downloading of the Maxmind GeolP database. The default interval is 1 week.

For additional details, see Maxmind GeolP.

3.3. Configuration settings © 2015-2025 Corelight 13

Corelight-update, Release 1.14.1

3.3.2.2 Remote data sources

Remote sources are required to be added to each policy configuration. However, any source that’s cached globally, will
only be downloaded once. See Remote source settings for details.

3.3.2.3 Locally managed data sources

In addition to downloading content from external sources for your sensors, Corelight-update will also accept content
and configurations that are placed locally using specific folder paths. And you can define and deploy the content at a
Global-level, or at a Policy-level.

Corelight-update provides separate folders for data sources at the Policy-level and Global-level where you can place
pre-formatted content to be processed. The following is a list of folder locations files can be placed for automatic
processing:

For example, if an intel file is placed in the global-intel folder, the contents are added to the published intel file for
all policies. If an intel file is placed in a policy-named local-intel folder, the contents are automatically added to
the published intel file only for that policy.

The following functions do not require any additional configuration:

Local Intel folders

* All Zeek compatible formatted files in the global-intel folder are added to all policies as an intel file.
* Any Zeek compatible formatted files placed in a local-intel folder is added to that policy as an intel file.

¢ Any intel files in the global-intel, local-intel, or generated by an enabled integration are automatically
merged into a single intel.dat file.

Local Suricata folders

* Any Suricata formatted “.rules” or “.rules.tar.gz” ruleset files placed in the global-suricata folder are avail-
able to all policies.

* Any Suricata formatted “.rules” or “.rules.tar.gz” ruleset placed in a local-suricata folder are available to
that policy.

e Any ruleset file in the global-suricata, local-suricata, or generated by an enabled integration are auto-
matically processed and merged into a single suricata.rules file.

14 © 2015-2025 Corelight Chapter 3. Global configuration

Corelight-update, Release 1.14.1

Local Input folders

* Any Zeek compatible formatted files placed in the global-input folder are available to all policies.
* Any Zeek compatible formatted files placed in a local-input folder are available to that policy.

* Any input files in the global-input, local-input, or generated by an enabled integration, (with the same
name) will automatically get merged into a single input file with that name.

Local YARA folders

* Any YARA formatted files placed in the global-yara folder are available to all policies.
* Any YARA formatted files placed in a local-yara folder are available to that policy.

* Any YARA files in the global-yara, local-yara, or generated by an enabled integration are automatically
processed and merged into a single yara_rules.yar file.

To review the order that the configurations are processed in, see Order of operations.

3.3.3 Global-level Suricata settings

If you maintain a centralized set of Suricata configuration files for ruleset tuning and management, you can configure
Corelight-update to automatically download your Suricata configuration files from a remote source, and apply them to
the Corelight-update connected sensors.

The Suricata configuration files disable.conf, enable.conf and modify.conf can be applied at a global level,
and at a policy level. If a disable.conf, enable.conf or modify.conf exist in the Global config directory, they
will be processed for each policy automatically.

* To learn about the processing order, see Order of operations.
* For information about applying Suricata configuration files at the policy level, see Suricata policy settings.
Each time the Corelight-update service runs, the Suricata rulesets can be processed up to three times for each policy:
1. Process any enabled Corelight recommended configs,
2. Process any enabled global-level configs,
3. Process the Suricata policy-level configs.

For example, to pull a modify.conf file from GitHub and apply it as part of your Global policy:

The supported authentication types are no auth, basic, or token. When using the no auth option, leave the auth_
type field empty.

See Using a proxy with Corelight-update for details about using a proxy to download remote sources.

3.3. Configuration settings © 2015-2025 Corelight 15

Corelight-update, Release 1.14.1

3.3.4 Updating the Global configuration

Changes can be made to the global policy using either:
* A config file.

* The Corelight-update CLI command by using the --global-settings switch.

Updating via --global-settings
The Corelight-update CLI command supports updating the Global Configuration directly using the
--global-settings switch.

* Multiple settings can be updated using a single command.

» Update nested settings by using a “.” , for example, webserver.enable=true.

¢ Other than remote_global_conf_files, any setting can be updated using a key=value pair.

For example:

Note: Making changes to a policy using the CLI bypasses the configuration files. To maintain a copy of the current
Global Configuration as a config file, export it to a file. See “Show Options” in the CLI commands.

See the Complete Global Settings below for a list of fields that can be updated directly.

Updating with a config file

When using a config file, make additions or changes to a policy in a configuration file before loading the file into
Corelight-update.

To update the global configuration:

1. Output the current global configuration as a file. For example, to create a global config file in yaml format:

2. Change the settings in the config file.

3. Update the global configuration. For example:

Warning: When making changes to a policy, the configuration file section being modified must also include any
previously defined, non-zero fields. Any fields left undefined will be automatically configured to their zero value.

After updating a configuration, we recommended verifying the global configuration on the console. For example:

16 © 2015-2025 Corelight Chapter 3. Global configuration

Corelight-update, Release 1.14.1

3.3.5 Complete global settings

3.3. Configuration settings

© 2015-2025 Corelight

17

CHAPTER
FOUR

POLICY CONFIGURATION

The Corelight-update policies controls what content is collected, processed, and pushed to Fleet Manager policies
and or sensors. This includes third-party integrations, Suricata rules management, Intel file management, Input file
management, historical file retention and Zeek package management.

4.1 Policy sources

Policy sources represent collections of local and remote pre-formatted data. This includes Suricata rulesets, Intelligence
Threat feeds, and other relevant data that can be use with the Input framework.

Corelight-update collects data from these sources, along with data from third-party integrations, to be processed ac-
cording to the respective management settings.

Policy data sources differ from third-party integrations

Policy data sources must be pre-formatted content you can download using an unauthenticated, basic-
authenticated, or token-authenticated URL. The URL for a remote policy source must be accessible via
HTTPS or HTTP. No other protocols are supported.

For more information on policy data sources, see:
Suricata configuration
Intel management
Input management
YARA management

For details about using a proxy to download remote sources, see Using a proxy with Corelight-update.

4.1.1 Remote source settings

The following fields are available for configuring a remote policy source:

(continues on next page)

18 © 2015-2025 Corelight

Corelight-update, Release 1.14.1

(continued from previous page)

* The policy source source_type field can be set to either suricata, intel, input or yara. When using the
intel or input source type, the URL must provide the data in a Zeek compatible format. For suricata, the
URL must provide the data in the Suricata rule format. When using the yara, the URL must provide the standard
yara rule file.

* The global_cache is disabled (false) by default for all sources. If global_cache is disabled, that source will
be download once for each policy that uses it.

* The auth_type field can be set to basic, token, or left empty for no auth.

* The filename field is optional. If it’s not specified, it will use the base of the URL as the filename.

4.1.2 Overview of adding policy sources

1. Determine the access url and authentication required for the policy data source.

2. For basic-authenticated sources, use the CLI command corelight-update encrypt <password> to gener-
ate an encrypted password to store in the policy configuration.

3. Configure the policy data source settings under the sources: section of the Corelight-update db-config file.

4.1.3 Locally managed data sources

In addition to downloading content from external sources for your sensors, Corelight-update will also accept locally-
sourced content and configurations that can be applied at a Global-level, or at a Policy-level.

Corelight-update provides folders for input, threat intel, suricata, and YARA data at the Global-level and Policy-level,
where you can place pre-formatted content to be processed. The following is a list of folder locations files can be placed
for automatic processing.

For example, if an intel file is placed in the global-intel folder, the contents are added to the published intel file
for all policies. If an intel file is placed in a policy local-intel folder, the contents are automatically added to the
published intel file only for that policy.

The following functions do not require any additional configuration:

4.1. Policy sources © 2015-2025 Corelight 19

Corelight-update, Release 1.14.1

4.1.3.1 Local Intel folders

* All Zeek compatible formatted files in the global-intel folder are added to all policies as an intel file.
* Any Zeek compatible formatted files placed in a local-intel folder is added to that policy as an intel file.

* Any intel files in the global-intel, local-intel, or generated by an enabled integration are automatically
merged into a single intel.dat file.

4.1.3.2 Local Suricata folders
* Any Suricata formatted “.rules” or “.rules.tar.gz” ruleset files placed in the global-suricata folder are avail-
able to all policies.

* Any Suricata formatted “.rules” or “.rules.tar.gz” ruleset placed in a local-suricata folder are available to
that policy.

e Any ruleset file in the global-suricata, local-suricata, or generated by an enabled integration are auto-
matically processed and merged into a single suricata.rules file.

4.1.3.3 Local Input folders

¢ Any Zeek compatible formatted files placed in the global-input folder are available to all policies.
* Any Zeek compatible formatted files placed in a local-input folder are available to that policy.

* Any input files in the global-input, local-input, or generated by an enabled integration, (with the same
name) will automatically get merged into a single input file with that name.

4.1.3.4 Local YARA folders

* Any YARA formatted files placed in the global-yara folder are available to all policies.
* Any YARA formatted files placed in a local-yara folder are available to that policy.

¢ Any YARA files in the global-yara, local-yara, or generated by an enabled integration are automatically
processed and merged into a single yara_rules.yar file.

To review the order that the configurations are processed in, see Order of operations.

4.1.4 Processing a policy source

When Corelight-update processes a policy source, it:
1. Checks the global cache for the target filename.
1. If the file is present, use the file to process the source.
2. If the file is not present in the global cache:
1. Check for a policy level cache of the file and generate an If-Modified-Since HTTP header.
2. Attempt to download the file using the If-Modified-Since HTTP header.
* If a new file is downloaded, create or update the policy-level cache.

3. Use the policy-level cache to process the source.

20 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

Caution: Matches are made in the global cache using only the filename, not the full URL.

4.1.5 Default policy sources

The default policy provided for Corelight-update includes the pre-configured Suricata rulesets:
* Corelight Labs Suricata Rules
* ET/Open ruleset:

You will find the following pre-configured policy source settings in the db-config example file:

For more source ideas, see Commonly used Suricata rulesets

4.1.5.1 Threat intelligence source example

The threat intel sources managed with Corelight-update must provide their data in a Zeek compatible format.

The following example includes settings for the ThreatQ and MISP threat intel sources:

Note: For more details on these examples, see Third-party integrations settings.

4.1. Policy sources © 2015-2025 Corelight 21

Corelight-update, Release 1.14.1

4.1.6 Third-party integrations
A third-party integration is a data source that might require custom formatting or parsing of the data before it’s used
on a sensor, or has unique authentication requirements.

For a list of the current integrations and their respective configurations, see Third-party integrations settings

4.2 Policy inventory settings

4.2.1 Push content settings

You can use Corelight-update to push content to Corelight Sensors. It supports both Fleet-managed and stand-alone
sensors. To push content to sensors, the push_content settings must be enabled in a policy. Pushing content is
disabled by default.

Once pushing content is enabled at the policy level, it can be overridden for non-Fleet-managed sensors in the inventory
for that policy. See Inventory settings below for details.

The policy settings for pushing content are:

Force pushing all content

By default, Corelight-update will only push new content to sensors. When you add a sensor to the policy, no content is
pushed to the sensor until new content is generated. You can use the CLI to force push existing content to sensors. See
CLI commands for details.

The policy inventory can include Fleet Manager details and/or a list of the Corelight sensors to deploy content to
using Corelight-update. The sensors can be a combination of appliances, such as the hardware, virtual, software, and
microsensors.

Sensors that are Fleet managed do not need to be listed individually in the Corelight-update inventory. Corelight-update
will utilize Fleet Manager to deploy content to those sensors. For sensors that are not Fleet managed, you can push
content directly to them by listing their details in the inventory.

22 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

4.2.2 Overview of adding Fleet Manager and sensor details to the inventory

1. Prepare a list of the sensors that Corelight-update will deploy to.
* For Fleet-managed sensors, the sensor inventory will be collected from Fleet Manager.

* For all standalone appliance sensors: collect the IP address or FQDN, and the sensor username and pass-
word.

* For all microsensors (version 1.x software sensors): collect the IP address or FQDN, and the host ssh key,
or the sensor username and password.

2. If you have Fleet-managed sensors, configure the connection to your Fleet Manager instance under the fleet:
section of the Corelight-update db-config file.

3. Configure the inventory settings under the sensors: portion of the Corelight-update configuration file, adding
a new -name inventory section and associated fields for each standalone,non-Fleet managed sensor type in your
inventory.

4. Use the configuration file to update the policy in Corelight-update.

4.2.3 Inventory settings

The following fields are available for configuring the inventory:

(continues on next page)

4.2. Policy inventory settings © 2015-2025 Corelight 23

Corelight-update, Release 1.14.1

(continued from previous page)

Warning: The suricata_config_path /etc/corelight/suricata/ does not exist by default on Microsensors
and must be created before Suricata config files can be pushed. The folder must be writable for the username listed
for that sensor.

Encrypted Passwords

Fleet and individual sensor passwords should be encrypted before they are stored in inventory. Using the encrypted_
pass field allows you to replace the use of plain text passwords in your Corelight-update configuration file. See Ad-
ministering encrypted passwords.

4.2.3.1 Add Fleet-managed sensors
Corelight-update can use your Fleet Manager instance to collect an inventory of connected sensors, and deploy content
to those sensors.

When Corelight-update is deploying content to Fleet-managed sensors, it uses the Fleet Manager API to authenticate
and proxy input files to those sensors through the Fleet Manager instance. If a Fleet-managed sensor is disconnected
from Fleet Manager during the content push, that sensor will not receive files until the next content push (assuming it
is connected during the push).

Prerequisites

To configure Corelight-update to deploy content using Fleet Manager, you’ll require:

* Network connectivity from the Corelight-update host to the Fleet Manager instance. Corelight-update does not
require direct access to the Fleet-managed sensors.

e The IP address or FQDN of the Fleet Manager instance.
* A Fleet Manager administrator username and password.

* The names of the Fleet Manager sensor, intel, and suricata policies you want Corelight-update to push content
into.

If the policy name in Corelight-update does not match the Fleet Manager sensor policy name, suricata policy
name, and intel policy name, the respective Fleet Manager policy names must be specified in Corelight-update.

24 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

Configure the Fleet Manager connection

To enable Corelight-update to communicate with the Fleet instance, configure the fleet: section of the configuration
file.

Once connected, Corelight-update will collect a list of sensors for each Fleet Manager policy automatically.

If you have Fleet-managed sensors manually configured in the Corelight-update inventory, they can be removed from
the inventory, or remain if set to fleet: true in the sensor details. This will cause Corelight-update to skip the
sensor while it processes the rest of the policy inventory.

Deploying content to Fleet Manager

Suricata rulesets, Intel files, YARA files, and package bundles are uploaded directly to Fleet Manager and then:
* For Intel files:
— The Intel Policy in Fleet Manager is updated to use the latest intel file.

If it does not already exist, a new intel source named Corelight-update is created and updated with
the latest intel file.

% If the source already exists, it is updated with the latest intel file.
— The Intel Policy can be associated with a Sensor Policy in Fleet Manager.
* For YARA files:
— A YARA Rules Source in Fleet Manager is updated to use the latest YARA file.

% If it does not already exist, a new YARA Rules source named Corelight-update_<policyname>
is created with the latest YARA file.

* If the source already exists, it is updated with the latest YARA file.
— The YARA source can be enabled or disabled using the Fleet Manager interface.

— The YARA source can be associated with a YARA ruleset, and the YARA ruleset can be added to a Sensor
Policy using Fleet Manager.

* For Suricata rules files:
— If Enable Suricata Automation is enabled in the Suricata Policy in Fleet Manager:

* A Suricata Ruleset Source in the Suricata Policy is updated to use the new Suricata ruleset.

4.2. Policy inventory settings © 2015-2025 Corelight 25

Corelight-update, Release 1.14.1

- If it does not already exist, a new Suricata Ruleset source named Corelight-update is created
with the new Suricata ruleset.

- If the source already exists, it is updated with the new Suricata ruleset.
— If Enable Suricata Automation is NOT enabled in the Suricata Policy in Fleet Manager:
The Suricata Policy in Fleet Manager is updated to use the new Suricata ruleset.
 For Suricata configuration files:
— The Suricata Policy in Fleet Manager is updated to use the new Suricata config files.

If Fleet Manager details are configured in the Corelight-update policy, new Suricata rulesets, Intel files, YARA files,
and package bundles will be uploaded even if no sensors are connected to that policy in Fleet Manager. Once updated,
Fleet Manager will handle pushing the new content to the connected sensors. Any offline sensors will receive their
update once they reconnect to Fleet Manager.

4.2.3.2 Add standalone appliance sensors
When Corelight-update is deploying content to appliance sensors, such as hardware and virtual sensors that are not
Fleet-managed, it uses the sensor API to authenticate and deploy content to those sensors.
To configure a standalone appliance sensor in Corelight-update, you’ll require:
* Network connectivity from the Corelight-update host to the sensor.
¢ The IP address or FQDN of the sensor.
* The sensor username and password.

The Corelight-update sensor inventory requires one entry for each sensor. You can remove any setting that’s not required
for a specific sensor’s configuration.

Fleet Managed Sensors

If a stanalone appliance sensor is later connected to Fleet Manager, you can remove it from the Corelight-update in-
ventory, or you can set fleet: true in the sensor inventory settings. This will cause Corelight-update to skip the
sensor while it processes the rest of the policy inventory.

26 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

4.2.3.3 Add microsensors
When Corelight-update is deploying content to Microsensor, it uses SCP to push content to a local folder path on the
Sensor.
To configure a Microsensor in Corelight-update, you’ll require:
» Network connectivity from the Corelight-update host to the Microsensor.
e The IP address or FQDN of the Microsensor.
* A sensor username, and the password or host ssh key.

¢ The sensor user needs read/write access to the content folders.

Note: The command used to reload the Suricata rules requires sudo access. If you’re deploying Suricata rulesets to
a microsensor, the host username will also require passwordless sudo access to apply new rulesets.

The Corelight-update sensor inventory requires one entry for each Microsensor. You can remove any setting that’s not
required for a specific sensor’s configuration.

4.2.3.4 Using Corelight-update to update a sensor running on the same host
If Corelight-update is installed on the same host as a microsensor, no network connectivity information is needed. The

only requirement is to define the local path where the files will be placed for the sensor. Any package bundles will not
be moved, they will just get installed.

(continues on next page)

4.2. Policy inventory settings © 2015-2025 Corelight 27

Corelight-update, Release 1.14.1

(continued from previous page)

4.3 Suricata configuration

In addition to downloading Suricata rulesets from multiple sources, Corelight-update can manage the ruleset. It works
by optionally applying Corelight recommended changes to the rulesets, and extracting content from Suricata rules and
creating Zeek Intel rules with that content.

Content is only extracted from enabled rules and the “do_notice” flag can individually be set based on rule type. This
means you can use the typical enable.conf and disable.conf rules to control what data is extracted. See Suricata policy
settings for details.

Tip: No configuration is required to include local Suricata rulesets. See Locally managed data sources for details.
* Any “.rules” or “.rules.tar.gz” ruleset placed in the global-suricata folder is automatically available to all policies.

* Any “rules” or “.rules.tar.gz” ruleset placed in a local-suricata folder is automatically available to that policy.

4.3.1 Suricata configuration files

Suricata uses four configuration files when processing traffic and/or testing rules.
* suricata.yaml
* classification.config
* reference.config
e threshold.config

These configuration files can be manually placed in the policy configs folder (/etc/corelight-update/configs/
<policy>/), or the policy can be configured to pull Suricata configuration files from remote sources if desired. See
Remote config files.

See Using a proxy with Corelight-update for details about using a proxy to download remote sources.

Optionally, these configuration files can be pushed to the policy in Fleet Manager or directly to a sensor. See Push
content Setlings.

Warning: Suricata configuration files are not pushed to Microsensor.

28 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

4.3.2 Disabled rules

By default, disabled rules are not written back to the final Suricata ruleset. If desired, disabled rules can be included
in the ruleset file by enabling write_disabled_rules: true in the Suricata policy settings.

4.3.3 Ruleset testing
By default, Corelight-update attempts to test the ruleset using Suricata, if it’s available on the host running Corelight-
update. If Suricata is not available, Corelight-update logs that it did not test the ruleset and continues.

If the rulesets is tested, and one or more rules fail the test, the details of the failed rules are logged and processing
continues. Optionally, Corelight-update can be configured to discard a failed ruleset, after the failed rules have been
logged, by setting fail_on_ruleset_error: true in the Suricata policy settings.

The output of the ruleset tests will be logged to /var/corelight-update/files/<policy_name>/
suricata-ruleset-logs/suricata.log. Here’s an example log output with a few failed rules.

(continues on next page)

4.3. Suricata configuration © 2015-2025 Corelight 29

Corelight-update, Release 1.14.1

(continued from previous page)

If any of the Suricata configuration files are placed in the policy configuration folder, or pulled from a remote location,
they are automatically used when testing the Suricata ruleset.

Tip: It is recommended to use the same version of Suricata for testing that will be used in production. Testing with
the Corelight version of Suricata can be accomplished by installing the Corelight Softsensor (without a license) on the
same host running Corelight-update.

For debian based installation, Software Sensor is automatically installed as a “recommended” package. This can be
disabled by adding the --no-install-recommends when installing Corelight-update.

Corelight-update and Software Sensor use the same package repository so the installation only requires a single com-
mand. See Software Sensor Online Installation for details.

See the following sections for more details:

4.3.3.1 Suricata policy settings

The configuration options mentioned in Suricata configuration can be changed with the following settings:

(continues on next page)

30 © 2015-2025 Corelight Chapter 4. Policy configuration

https://docs.corelight.com/docs/sensor/softwaresensor/setup.html#online-installation

Corelight-update, Release 1.14.1

(continued from previous page)

Atomic rule extraction

Currently, only IP and JA3 based rules can be extracted. For IP based rules, the rule has to have a subnet or IP address
in the rule. If it only uses a address group, it will not get extracted.

Remote config files

If you maintain a centralized set of Suricata configuration files for ruleset tuning and management, you can configure
Corelight-update to automatically download the files from a remote source, and apply them to the Corelight-update
connected sensors.

The Suricata configuration files disable.conf, enable.conf and modify. conf can be applied at a global, and at a
policy level.

* To learn about the processing order, see Order of operations.
 For information about setting Suricata configuration files at the Global level, see Configuration settings.

For example, to pull a modify.conf file from GitHub:

The supported authentication types are no auth, basic, or token. When using the no auth option, leave the auth_
type field empty.

Supported Suricata configuration files include:
* disable.conf

¢ enable.conf

4.3. Suricata configuration © 2015-2025 Corelight 31

Corelight-update, Release 1.14.1

* modify.conf

* suricata.yaml

* classification.config
* reference.config

e threshold.config

4.3.3.2 Suricata rules management
Corelight-update uses the familiar disable, enable, and modify.conf files to process and manage Suricata rules. How-
ever, Corelight-update offers significant performance and functionality improvements compared to other solutions.

Once all the rules from all the sources are downloaded and merged, Corelight-update makes up to three passes pro-
cessing the rules:

1. The first pass will process Corelight recommended modifications (if enabled).
2. The second pass will process global modifications.
3. The third pass will process the individual policy modifications.

For each pass, any disable rule filters (disable.conf entries) are processed, then the enable rule filters (enable.conf
entries), followed by rule modifiers (modify.conf entries).

File filters

In addition to disabling individual rules, the disable. conf entries can be used to ignore entire rulesets by file name.
Filters are used to identify and ignore ruleset files as they are copied to the working directory for processing. After the
files are downloaded and uncompressed (as necessary), if a ruleset filename matches an entry in disable.conf, it is
ignored.

Important: The Filename filter matches all file names that begin with the entry.

Rule filters

To disable a rule that is enabled by default, add the rule to the disable.conf file. To enable a rule that is disabled by
default, add the rule to the enable.conf file.

There are multiple methods to identify rules to be disable or enabled. One method, rule filters can be added by listing
the Signature ID <SID> or Generator ID:Signature ID combination <GID>:<SID>.

32 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

Another method is to use regex. Rule filters that use a regex pattern will be applied to rules that match that pattern.

Note: Regex patterns must be wrapped in double quotes or have any white space removed. Use a \ s to represent white
space.

Special characters also have to be escaped, for example, use \$ for $.

A method unique to Corelight-update, rule filters can also be added individually or in groups with Field: Value pairs.
Use any of these fields to identify the rule:

When using the Metadata field to identify a rule, if there are any white spaces in the string to look for, it must be
wrapped in double quotes.

Rule modifiers

To modify a Suricata rule, identifying the rule is the same as rule filters, with the exception that multiple rules can also
be identified with GID:SID pairs. Multiple GID:SID entries on the same line need to be comma separated.

Rules can be identified and modified one of four ways:

non

e The legacy format: <gid:sid> "<from regex>" "<to string>" (The gid is optional.)

non

* The legacy regex format: re:<rule regex> "<from regex>" "<to string>"
e The new Corelight-update regex format: re:<rule regex> <field>:<value>

* The new Corelight-update format: <rule> <field>:<value>

Tip: See the Suricata documentation for more information about Suricata rules format.

4.3. Suricata configuration © 2015-2025 Corelight 33

https://suricata.readthedocs.io/en/suricata-6.0.4/rules/intro.html

Corelight-update, Release 1.14.1

Legacy format and Legacy regex format

The legacy and legacy regex formats require the <from regex> and <to string> statements to be enclosed in double
quotes, and separated with a space "<from regex>" "<to string>". The " " between the expressions delineates
the two.

With the legacy format, the rule identifier is a combination of one or more GID: SID combinations. With the legacy
regex format, the rule identifier is a regex pattern re:<rule regex>. For example,

Caution: Regex patterns used to identify the rule must be wrapped in double quotes or have any white space
removed. Use a \s to represent white space.

Corelight-update regex format

The Corelight-update regex format can use a regex pattern to identify the rule or rules to be modified, and then use the
new Field:Value method to modify the rule.

In the Field:Value pair, values can be enclosed in double quotes but are not required (unless double quotes are
required in that signature field i.e. “Msg”)

Once the rule is identified, it can be modified by listing the field and the value it should be set to. (See Modify examples)

New Modify Options for v1.3.0

New in Corelight-update v1.3.0, content can now be appended to the “Metadata” and “Other” fields with
MetadataAppend and OtherAppend respectively. If the “Append” field name is used, any content in the “Value”
section will be appended with a space between the existing content and the new content.

(continues on next page)

34 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

(continued from previous page)

Corelight-update format

The same as above, in the Field:Value pair, values can be enclosed in double quotes but are not required (unless
double quotes are required in that signature field i.e. “Msg”)

Any of these fields can be used to identify the rule:

Metadata contains

If the metadata contains value includes white spaces, it must be wrapped in double quotes.

Once the rule is identified, the same fields listed for Corelight-update regex format (listed above) can be modified by
listing the field and the value.

4.3. Suricata configuration © 2015-2025 Corelight 35

Corelight-update, Release 1.14.1

4.3.3.3 Modify examples

It is common to modify the source and/or destination of a rule. Multiple addresses or ranges of addresses can be
assigned to the same rule. See the Suricata documentation for examples of source and destination operators.

This example modifies a rule so that it only matchs on traffic coming from all $HOME_NET sources except 192.168.0.1.

Tip: The unedited rule was added as a comment just to document the original rule.

This example will modifies the rule so it matches any source except 192.168.0.1, and any destination except 192.168.0.2.

This example modifies the rule so it matches all customer networks except customer “B”.

The following example modifies the priority of all rules with a classtype of “attempted-user” to 1.

The following example modifies all rules with a specific classtype to another classtype.

4.4 Intel management

You can leverage the Zeek Intelligence framework to match a list of IOC’s against live network traffic on the sensor.
Use Corelight-update to validate and merge one or more threat intel files, and publish a single, integrated threat intel
file.

36 © 2015-2025 Corelight Chapter 4. Policy configuration

https://suricata.readthedocs.io/en/suricata-6.0.4/rules/intro.html#source-and-destination

Corelight-update, Release 1.14.1

4.4.1 Intel management settings

Every time a new intel file is generated, a copy of the file with the current timestamp is also created. The intel_file_
cleanup and max_intel_file_age (in hours) control the retention of the timestamped copies.

4.4.2 Disable Threat Intel indicators

If provided, Corelight-update will also use an intel disable file disable_filename to remove unwanted indicators
from the published intel file, allowing you to effectively “disable” specific threat intel indicators.

The disable.intel file is a text file with a single column of indicators to remove.

4.4.3 Add Threat Intel sources

Threat intel sources are collections of IOC’s in Zeek compatible formatted files. These files can be provided by a variety
of sources, including security vendors, and as open source IOC collections.

Corelight-update can pull threat intel sources hosted in local and remote repositories.
To add threat intel sources, you’ll configure them as Corelight-update Policy sources.
For an example of a third-party Threat Intel policy source configuration, see Threat intelligence source example

To review the order that the configurations are processed in, see Order of operations.

4.5 Input management

You can leverage the Zeek Input framework to provide contextual data for use with enabled Zeek packages. Depending
on the Zeek packages, this data can be used to generate logs (alerts), prevent the generation of logs (alerts), and/or
enrich logs with additional data from external sources.

Corelight-update can collect input files from local or remote sources and/or generate input files with enabled third-party
integrations. Once collected, any input files with the same name will automatically get merged into a single input file
with that name and published.

4.5. Input management © 2015-2025 Corelight 37

Corelight-update, Release 1.14.1

4.5.1 Input management settings

Corelight sensors contain a number of Zeek packages that can take advantage of input files. However, none of those
files are included out of the box. If default_input is enabled, Corelight-update will automatically generate templates
for those files and place them in the local-input folder. See Locally managed data sources for the path.

4.6 YARA management

YARA integrates with Zeek on Corelight Sensor, providing YARA rules embedded into workflows, and eliminating
the need to build additional processes and connect multiple tools. This provides end-to-end file extraction, inspection,
and alerting capabilities without the need to maintain additional monitoring systems.

4.6.1 YARA prerequisites

1. Fleet Manager 28.1 or later
2. A Corelight Sensor or Software Sensor running 28.1 or later

3. A YARA feature license.

4.6.2 YARA management settings

Every time a new YARA file is generated, a copy of the file with the current timestamp is also created. The settings
yara_file_cleanup and max_yara_file_age (in hours) control the retention of the timestamped copies.

4.6.3 Add YARA source

A YARA source is a YARA file (.yara or .yar) that contains YARA rules. One or more source files make up a YARA
ruleset.

Corelight-update can collect YARA files from local or remote sources, and generate YARA files from enabled hird-
party integrations. Once collected, Corelight-update will automatically merge multiple YARA sources into a single
YARA file named yara_rules.yar.

The file is published as a YARA source in Fleet Manager using the user provided yara_source_namespace in Fleet
configuration. A namespace for a YARA source is a tag (an identifying string that must not contain a colon (:) character)
that is combined with the name of each YARA rule in the source to ensure that YARA has a unique identifier for each
rule.

To add local or remote YARA sources, see:
* Policy remote sources
* Policy local sources

To review the order that the configurations are processed in, see Order of operations.

38 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

4.7 Third-party integrations settings

Third-party integrations provide support for a vendor-specific threat source, including source-based customizations and
authentication.

Third-party integrations differ from Corelight-update Policy sources, in that a Policy source must be pre-formatted
content you can download using an unauthenticated, basic-authenticated, or token-authenticated URL.

4.7.1 Analyst1

Analystl integration collects Indicators, Suricata rules, and YARA rules from the Analystl platform. This data en-
hances threat detection, analysis, and response capabilities across systems and networks.

4.7.1.1 Analyst1 Suricata
The Analyst1 Suricata integration is designed to fetch Suricata rules from a specified sensor, of type “Suricata”, within
the Analystl platform.

If the ‘interval_hours’ is set to O, the integration will attempt to download additional content each time the Corelight-
update service runs. See Configuration settings

Once downloaded, the ruleset will be processed with the rulesets from all other sources.

Settings

4.7.1.2 Analyst1 YARA
The Analyst] YARA integration is designed to fetch YARA rules from a specified sensor, of type “YARA”, within the
Analyst1 platform.

If the ‘interval_hours’ is set to O, the integration will attempt to download additional content each time the Corelight-
update service runs. See Configuration settings

Once downloaded, the ruleset will be processed with the rulesets from all other sources.

4.7. Third-party integrations settings © 2015-2025 Corelight 39

Corelight-update, Release 1.14.1

Settings

4.7.1.3 Analyst1 Indicator
The Analystl Indicator integration is designed to fetch data from a specified sensor, of type “Indicator”, within the
Analyst1 platform.

If the ‘interval_hours’ is set to O, the integration will attempt to download additional content each time the Corelight-
update service runs. See Configuration settings

Once downloaded, the data will be merged with all other intel files (if there are any), and published. If “intel” in enabled
in the “push_content” settings, the file will automatically get pushed to the Fleet Manager policy and/or all sensors in
the policy. See Push content settings for more details.

Analystl indicator types and fields will be mapped to the following:

Table 1: Analystl Indicator type mapping

Analyst1 Indicator Type Zeek Indicator Type
ip Intel:: ADDR

ipv6 Intel:: ADDR

file Intel::File_ HASH
email Intel::EMAIL
httpRequest Intel::URL

url Intel::URL

domain Intel:: DOMAIN

40 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

Table 2: Analystl Indicator field mapping

Intel File Field Analyst1 Field Description

indicator value.name The indicator value.

indicator_type type Based on indicator type map listed above.
meta.source sources.title The Source of the indicator.

meta.desc description The detailed description of the indicator.
meta.url construct from user config and indicatorid =~ URL from user config.

meta.do_notice
meta.confidence

meta.threat_score
meta.risk_score
meta.verdict

meta.verdict_source
meta.firstseen
meta.lastseen
meta.associated
meta.category

meta.campaigns
meta.reports

From user config
confidenceLevel

not available
indicatorRiskScore
construct from Benign

not available

activityRange.startDate
activityRange.endDate

targets, attackPatterns, actors, malwares
not available

not available
reportCount

From user config.

The indicator’s confidence level (by default
indicators have no confidence level; if set it
was set by an analyst).

The indicator risk score.

The indicator’s benign status (by default in-
dicators are not benign and assumed an indi-
cator of compromise).

The start date for activity associated with the
indicator.

The latest date for activity associated with
the indicator.

The targets, attack patterns, actors, and mal-
wares associated with the indicator.

The count of evidence files associated to the
indicator as of the request.

Settings

The following is a sample input file created by this integration, using tab-separated values.

4.7. Third-party integrations settings

© 2015-2025 Corelight

41

Corelight-update, Release 1.14.1

(continues on next page)

42 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

(continued from previous page)

Intel log

This integration will enrich the intel.log with content like the following:

(continues on next page)

4.7. Third-party integrations settings © 2015-2025 Corelight 43

Corelight-update, Release 1.14.1

(continued from previous page)

If the ExtendIntel Zeek package is loaded, the intel.log will be enriched with additional content like the following: (all
indicators will not have all fields)

4.7.2 Axonius

The Axonius integration will download data about all entities known to Axonius that have a current IP address.

Axonius relies on connections to other vendor platforms, and polls for data every 12 hours by default. Once data has
been ingested, a discovery process will correlate data from multiple connectors. The discovery process can take up to
four hours to complete.

The Axonius integration will automatically check the status of the discovery process each time the service runs, as
querying the Axonius API can have unpredictable results if the discovery process is still processing during the query.
In scenarios where the discovery process has not completed, the data cached from the previous successful run will be
used, and the API will be queried again on the next service interval.

The interval_hours setting should not be set lower than the Axonius polling frequency. Ifit’s set to 0, the integration
will attempt to download additional content each time the Corelight-update service runs. See Configuration settings

44 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

Once downloaded, the data can then be used to create two separate Input Framework files. One file includes CVE
information, and the other contains Host information. These files can be used by Zeek scripts to generate new logs, or
enrich existing logs, such as the known_hosts.log or suricata_corelight.log.

The input file will be published along with any other input files from other configured integrations, if any. If Corelight-
update is configured to push input files, the file will automatically get pushed to the Fleet Manager policy and/or all
sensors in the policy. See Push content settings for more details.

4.7.2.1 Settings

4.7.2.2 CVE Input file

The input file contains the following information (if it’s available):
P address (required)
* Hostname
* Host Unique ID: Provided by the device data 'internal_axon_id' field.
* OS version
* Machine domain
* Endpoint information source (required)
e Known CVE list (required)

The following is a sample input file created by this integration, using tab-separated values.

(continues on next page)

4.7. Third-party integrations settings © 2015-2025 Corelight 45

Corelight-update, Release 1.14.1

4.7.2.3 Hosts Input file

The input file contains the following information (if it’s available):

IP address (required)
MAC address

Hostname

(continued from previous page)

Host Unique ID: Provided by the device data 'internal_axon_id' field.

OS version
Endpoint status
Machine domain

Endpoint information source (required)

The following is a sample input file created by this integration, using tab-separated values.

46

© 2015-2025 Corelight

Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

Attention: The integration only creates the Input Framework files to be loaded on sensors. Additional Zeek
scripts are required to be loaded on the sensors to use this data. If you enable these integrations, Corelight-update
will upload the input files to the sensor. But if the desired script isn’t available on the sensor, the input data won’t
be used.

See Zeek package management for information about using Corelight-update to manage Zeek package bundles.

See Zeek-Endpoint-Enrichment for an example of a Zeek package that can use this data.

4.7.3 CrowdStrike

CrowdStrike integration collects Hosts and Vulnerability data of systems, networks and applications using Falcon Ex-
posure Management. Suricata Rulesets and Indicators are downloaded from CrowdStrike’s Falcon Threat Intelligence.

4.7.3.1 Falcon Exposure Management - Hosts & CVEs

The CrowdStrike Falcon Exposure Management integration will download data about all hosts with CVE’s that match
the provided criteria. If no “entity_type” is specified, all known entities (that have a current IP address) will be listed.
If no CVE “status” or “severity” is specified, all CVE’s who’s status is NOT “closed” will be downloaded.

CrowdStrike Falcon Exposure Management relies on endpoint agents and (if configured) performs “network scans” to
identify network entities and vulnerabilities. As a result, frequently downloading data from Falcon Exposure Manage-
ment can provide near-realtime updates. If the ‘interval_hours’ is set to 0, the integration will attempt to download
additional content each time the Corelight-update service runs. See Configuration settings

Once downloaded, the data will be used to create an Input Framework file that can be used by a Zeek script to generate
new logs, or enrich existing logs, such as the known_hosts.log, suricata_corelight.log or notice.log.

The input file will be published with any other input files from other integrations (if there are any). If “input” in enabled
in the “push_content” settings, the file will automatically get pushed to the Fleet Manager policy and/or all sensors in
the policy. See Push content settings for more details.

CrowdStrike configuration settings:

(continues on next page)

4.7. Third-party integrations settings © 2015-2025 Corelight 47

Corelight-update, Release 1.14.1

Hosts Input file

The input file contains the following information (if it’s available):

IP address (required)
MAC address

Hostname

Host Unique ID: Provided by the 'aid' field of vulnerability data.

OS version

Endpoint status
Machine domain
Additional description
Customer ID

Endpoint information source (required)

(continued from previous page)

The following is a sample input file created by this integration, using tab-separated values.

(continues on next page)

48

© 2015-2025 Corelight

Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

CVE Input file

The input file contains the following information (if it’s available):

IP address (required)

Hostname

Host Unique ID: Provided by the 'aid' field of vulnerability data.

Machine domain

OS version

Endpoint information source (required)
Customer ID

CVE list

(continued from previous page)

The following is a sample input file created by this integration, using tab-separated values.

4.7. Third-party integrations settings

© 2015-2025 Corelight

49

Corelight-update, Release 1.14.1

Attention: The CrowdStrike Exposure Management integrations only create Input Framework files to be loaded
on sensors. Additional Zeek scripts are required to be loaded on the sensors to use this data. If you enable these
integrations, Corelight-update will upload the input files to the sensor. But if the desired script isn’t available on
the sensor, the input data won’t be used.

See Zeek package management for information about using Corelight-update to manage Zeek package bundles.

See Zeek package references for examples of Zeek packages that can use this data.

4.7.3.2 Falcon Suricata Ruleset

The CrowdStrike Falcon Suricata ruleset file will only be downloaded if it has changed since the last interval.

If the ‘interval_hours’ is set to O, the integration will attempt to download additional content each time the Corelight-
update service runs. See Configuration settings

Once downloaded, the ruleset will be processed with the rulesets from all other sources.

Attention: Downloading Suricata rules from CrowdStrike requires a Falcon Intelligence Premium subscription.
The Client ID and Client Secret need access to the following API: https://api.crowdstrike.com/intel/entities/rules-
latest-files/v1

Settings

4.7.3.3 Falcon Threat Intelligence

The CrowdStrike Falcon Indicators integration will download all requested indicators at each interval.

There are several configurable options for CrowdStrike indicators. Select the malicious confidence level, how many
days worth of history, and which indicators to collect.

Note: Due to the high number of hash indicators available, the length of history is configured separate from other
types of indicators.

Intel Malicious confidence options are: “high”, “medium”, “low”, or “unverified”. The following definitions apply to
malicious_confidence:

* high: If indicator is an IP or domain, it has been associated with malicious activity within the last 60 days.

50 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

e medium: If indicator is an IP or domain, it has been associated with malicious activity within the last 60-120
days.

* low: If indicator is an IP or domain, it has been associated with malicious activity exceeding 120 days.
* unverified: This indicator has not been verified by a CrowdStrike Intelligence analyst or an automated system.

Once downloaded, the data will be merged with all other intel files (if there are any), and published. If “intel” in enabled
in the “push_content” settings, the file will automatically get pushed to the Fleet Manager policy and/or all sensors in
the policy. See Push content settings for more details.

Attention: Downloading intel indicators from CrowdStrike requires a Falcon Intelligence
subscription or better. The Client ID and Client Secret need access to the following API:
https://api.crowdstrike.com/intel/combined/indicators/v1

Settings

Error: The default request limit is set to 50,000, which works for most customers. However, for some customer
subscriptions the request limit cannot be more than 10,000 or an error is returned.

In addition to configuring which indicators to collect, you can also filter the indicators based on the type of target or

4.7. Third-party integrations settings © 2015-2025 Corelight 51

Corelight-update, Release 1.14.1

the threat type.
* To list a single Target or Threat Type, enter the string with both double quotes and single quotes.

* To list multiple Targets or Threat Types, enter the string with both double quotes and square brackets around the
entire string, and single quotes around each item.

Examples:

Intel log

This integration will enrich the intel.log with content like the following:

4.7.3.4 Falcon YARA ruleset

The CrowdStrike Falcon YARA ruleset file will only be downloaded if it has changed since the last interval.

If the ‘interval_hours’ is set to O, the integration will attempt to download additional content each time the Corelight-
update service runs. See Configuration settings

Once downloaded, the data will be merged with all other YARA rule files (if there are any), and published as a YARA
source on Fleet Manager. If “yara_source” is enabled in the “push_content” settings, the file will automatically get
pushed to the Fleet Manager YARA source. See Push content settings for more details.

52 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

Attention: Downloading YARA rules from CrowdStrike requires a Falcon Intelligence Premium subscription.
The Client ID and Client Secret need access to the following API: https://api.crowdstrike.com/intel/entities/rules-
latest-files/vi

Settings

4.7.4 FireEye iSIGHT Threat Intelligence

Configure the FireEye iSIGHT Threat Intelligence integration to set how frequently the integration runs, how much
history to initially download, how much history to use in an Intel file, and how much history to maintain in the SQLite
DB. This integration uses the Mandiant Threat Intelligence v2 APIL

do_notice

The do_notice flag can be set based on the indicator type. It is set in the DB based on the settings when the indicator
is downloaded, and is updated in the intel file each time it is written.

Tip: By default, only MDS5 hash support is enabled on a Corelight Sensor. It is recommended that you use only one
hash type. If you plan on using another hash type, update the configuration and enable the appropriate package on the
Sensor.

If the ‘interval_hours’ is set to O, the integration will attempt to download additional content each time the Corelight-
update service runs. See Configuration settings

4.7.4.1 Settings

(continues on next page)

4.7. Third-party integrations settings © 2015-2025 Corelight 53

Corelight-update, Release 1.14.1

(continued from previous page)

4.7.4.2 Intel log

This integration will enrich the intel.log with content like the following:

(continues on next page)

54 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

(continued from previous page)

4.7.5 Maxmind GeolP

Corelight physical and virtual sensors include a GeolIP database and are not updated with Corelight-update. This section
only applies to Software Sensors.

You can sign up for free and get a license key from https://www.maxmind.com/en/geolite2/signup. Once you have an
AccountID and LicenseKey, enter them in the geoip configuration below. You can also edit the GeolP advanced con-
figuration if you want to change additional settings. The GeolP advanced configuration is in the Global Configuration
and Policy settings file located here: /etc/corelight-update/global/config.yaml

4.7.5.1 GeolP settings

Tip: If you are running Corelight-update on the same host as a Corelight Software Sensor, the default location the
sensor looks for the GeolP database is /usr/share/GeoIP/

The GeolP settings:

4.7.5.2 Maxmind configuration settings

If you need to change more settings than listed above, you can edit the Maxmind configuration file as needed.

Tip: The Maxmind configuration file is located here: /etc/corelight-update/global/GeoIP.conf

4.7.6 icannTLD Zeek script

icannTLD is a Zeek script that uses the official ICANN Top-Level Domain (TLD) list to extract the relevant information
from a DNS query and enrich the DNS log with that information. It can also mark whether it’s trusted or not. The
source of the ICANN TLDs can be found here: https://publicsuffix.org/list/effective_tld_names.dat.

Today, anyone can create a TLD and ICANN updates the list several times a day, as changes are made.
TLDs are generally split into two categories:

e ccTLDs are Country Code TLDs, such as .us, .jp and .uk

4.7. Third-party integrations settings © 2015-2025 Corelight 55

https://www.maxmind.com/en/geolite2/signup
https://publicsuffix.org/list/effective_tld_names.dat

Corelight-update, Release 1.14.1

* ¢TLDs are Generic TLDs and include the traditional names .com, .net, and .org. Generic TLDs also include the
new TLDs such as .info, .city, .microsoft, etc.

As of December 2022, there are 6887 Top-Level Domains that can include up to 4 parts.
* 19.2% (1,322) TLDs only contain one part (i.e. .com)
* 52.2% (3,597) TLDs contain two parts (i.e. mo.us)
e 28.5% (1,964) TLDs contain three parts (i.e. k12.mo.us)
* 0.1% (4) TLDs contain four parts (i.e. pvt.k12.ma.us)

As a result, any method of identifying TLDs without using the ICANN TLD database, i.e. regex, will miss identify
over 80% of them.

Tip: The Trusted Domains list is a custom list, created by the user, to filter domains during searches.

4.7.6.1 Script functions

icannTLD parses every DNS query and adds the following fields to the DNS Log.

Table 3: New DNS Log Fields

Field Value Description

icann_tld This is the Top-Level Domain based on the official list of TLDs from
ICANN.

icann_domain This is the Domain based on the official list of TLDs from ICANN.

icann_host_ This is the remaining nodes of the query after the domain has been re-

subdomain moved. In some cases this is the subdomain, in other cases it’s the host
name, and in others it’s host name and subdomain.

is_trusted_domain true/false Each query is marked true or false based on the icann_domain and a custom

trusted_domains.dat file.

Corelight-update can generate the required Input files needed for the icannTLD Zeek script. However, the optional
trusted domain list is not generated. See https://github.com/corelight/icannTLD for more details.

If the ‘interval_hours’ is set to O, the integration will attempt to download additional content each time the Corelight-
update service runs. See Configuration settings

The icannTLD settings:

56 © 2015-2025 Corelight Chapter 4. Policy configuration

https://github.com/corelight/icannTLD

Corelight-update, Release 1.14.1

4.7.7 Mandiant Threat Intelligence

Configure the Mandiant Threat Intelligence integration to set how frequently the integration runs, how much history to
initially download, how much history to use in an Intel file, and how much history to maintain in the SQLite DB. This
integration uses the Mandiant Threat Intelligence API v4. To use the v2 API, see FireEye iSIGHT Threat Intelligence.

do_notice

The do_notice flag can be set based on the individual indicator type, and an overall minimum Confidence Score.
For example, setting the min_confidence_score_doNotice: 95, would only set the do_notice flag to T, if the
Mandiant Confidence score was 95% or better. It is not set in the database; only when the intel file is created.

Tip: By default, only MD5 hash support is enabled on a Corelight Sensor. It is recommended that you use only one
hash type. If you plan on using another hash type, update the configuration and enable the appropriate package on the
Sensor.

If the ‘interval_hours’ is set to 0, the integration will attempt to download additional content each time the Corelight-
update service runs. See Configuration settings

4.7.7.1 Settings

(continues on next page)

4.7. Third-party integrations settings © 2015-2025 Corelight 57

Corelight-update, Release 1.14.1

(continued from previous page)

e download_history defines how many days of indicators to initially download. Once the initial download is
complete, the integration will run at the next interval and only pull changes back to the last successful download.
If a download fails, or the download_history setting is changed, the next download will pull all indicators as
defined by the download_history.

* exclude_os_indicators allows the download of open source indicators. This setting only applies to down-
loading new indicators. Once the indicator is downloaded, it will remain in the local database and in use until
it no longer meets the use_history setting. It will remain in the local database until the max_history is met
and it’s aged out.

The following is a sample input file created by this integration, using tab-separated values.

4.7.7.2 Intel log

This integration will enrich the intel.log with content like the following:

(continues on next page)

58 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

(continued from previous page)

If the ExtendIntel Zeek package is loaded, the intel.log will be enriched with additional content like the following: (all
indicators will not have all fields)

4.7. Third-party integrations settings © 2015-2025 Corelight 59

Corelight-update, Release 1.14.1

4.7.8 MS Defender

The MS Defender integration will download data about hosts, and any CVE data. It collects data for known and
unknown hosts using the Machines API. For CVE data collection, the Vulnerabilities by Machine and Software API is
used.

Once downloaded, the data is used to create two separate Input Framework files. One file includes CVE information,
and the other contains Host information. These files can be used by Zeek scripts to generate new logs, or enrich existing
logs, such as the known_hosts.log or suricata_corelight.log.

The input file will be published along with any other input files from other configured integrations, if any. If Corelight-
update is configured to push input files, the file will automatically get pushed to the Fleet Manager policy and/or all
sensors in the policy. See Push content settings for more details.

If the ‘interval_hours’ is set to O, the integration will attempt to download additional content each time the Corelight-
update service runs. See Configuration settings

4.7.8.1 Settings

4.7.8.2 CVE Input file

The input file contains the following information (if it’s available):
* [P address (required)
* Hostname
* Host Unique ID: Provided by the machine data 'id"' field.
* OS version
* Machine domain
* Endpoint information source (required)
* Known CVE list (required)

The following is a sample input file created by this integration, using tab-separated values.

(continues on next page)

60 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

4.7.8.3 Hosts Input file

The input file contains the following information (if it’s available):

The following is a sample input file created by this integration, using tab-separated values.

IP address (required)

MAC address

Hostname

Host Unique ID: Provided by the machine data 'id"' field.
OS version

Endpoint status

Machine domain

Endpoint information source (required)

(continued from previous page)

(continues on next page)

4.7. Third-party integrations settings © 2015-2025 Corelight

61

Corelight-update, Release 1.14.1

(continued from previous page)

Attention: The integration only creates the Input Framework files to be loaded on sensors. Additional Zeek
scripts are required to be loaded on the sensors to use this data. If you enable these integrations, Corelight-update
will upload the input files to the sensor. But if the desired script isn’t available on the sensor, the input data won’t
be used.

See Zeek package management for information about using Corelight-update to manage Zeek package bundles.

See Zeek-Endpoint-Enrichment for an example of a Zeek package that can use this data.

4.7.9 MISP - Zeek export

An export of all attributes of a specific bro type to a formatted plain text file. By default only published and IDS flagged
attributes are exported.

You can configure your tools to automatically download a file one of the Bro types.

To restrict the results by tags, use the usual syntax. Please be aware the colons (:) cannot be used in the tag search. Use
semicolons instead (the search will automatically search for colons instead). To get ip values from events tagged tag|1
but not tag? use:

Alternatively, it is also possible to pass the filters via the parameters in the URL. The format is as described below:

(continues on next page)

62 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

(continued from previous page)

Zeek Type MISP Type

all: All types listed below.

ip: ip-src, ip-dst, ip-src|port, ip-dst|port, domainl|ip
url: url

domain: hostname, domain, domainl|ip

ja3-fingerprint-
md5:

email:
filename:

filehash:

certhash:
software:

ja3-fingerprint-md5

email, email-src, email-dst, target-email
filename, email-attachment, attachment,
name|sha256, malware-sample, pdb

md5, shal, sha256, authentihash, ssdeep, imphash, pehash, impfuzzy, sha224,
sha384, sha512, sha512/224, sha512/256, tlsh, filename|mdS, filename|shal,
filename|sha256, filenamelauthentihash, filename|ssdeep, filenamelimphash,
filename|pehash, filenamelimpfuzzy, filename|sha224, filename|sha384, file-
name|sha512, filename|sha512/224, filename|sha512/256, filename|tlsh, malware-
sample

x509-fingerprint-shal

user-agent

filename|md5, filename|shal, file-

The keywords false or null should be used for optional empty parameters in the URL.

For example, to retrieve all attributes for event #5, including non IDS marked attributes too, use the fol-

lowing line:

4.7. Third-party integrations settings

© 2015-2025 Corelight

63

Corelight-update, Release 1.14.1

4.7.10 AlienVault Open Threat Exchange

The main settings for the AlienVault OTX integration determines how frequently the integration runs, how much history
to initially download, how much history to use in an Intel file, and how much history to keep in the SQLite DB.

The initial download will retrieve OTX threat intel “pulses” back to the configured days set in the ‘download_history’
setting. Each consecutive download will only contain new pulses since the last successful download. If you change the
‘download_history’ setting, the integration resets, and on the next run it will retrieve all pulses back to the new setting.

do_notice

The do_notice flag can be set based on the indicator type. It is set in the DB based on the settings when the indicator
is downloaded and is updated in the intel file each time it is written.

Tip: By default, only MDS5 hash support is enabled on a Corelight Sensor. It is recommended that you use only one
hash type. If you plan on using another hash type, update the configuration and enable the appropriate package on the
Sensor.

If the ‘interval_hours’ is set to O, the integration will attempt to download additional content each time the Corelight-
update service runs. See Configuration settings

4.7.10.1 Settings

(continues on next page)

64 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

(continued from previous page)

4.7.10.2 Intel log

This integration will enrich the intel.log with content like the following:

4.7.11 Zeek package management
Corelight-update implements some basic package management functions, similar to the Zeek Package Manager (ZKG).
https://docs.zeek.org/projects/package-manager/en/stable/
Corelight-update Zeek Package Management can:
* Build package bundles from a manifest file by downloading packages from the Internet.
* Build package bundles from a manifest file in offline mode.
 Push package bundles, built by Corelight-update, to Fleet Manager policies and/or sensors.
 Push package bundles, built off-box, to Fleet Manager policies and/or sensors.
* Push Corelight-signed package bundles to all sensors except Microsensor.

Corelight-update only generates package bundles from a manifest file. While Corelight-update can push package bun-
dles that are created by other sources, it does not install packages locally or edit existing bundles.

4.7. Third-party integrations settings © 2015-2025 Corelight 65

https://docs.zeek.org/projects/package-manager/en/stable/

Corelight-update, Release 1.14.1

Warning: Enabling “offline_mode” only prevents downloading the Zeek Package Index. If a URL is provided to
a package repo in the manifest file, it still attempts to clone it.

The policy settings for Zeek Package Management are:

The inventory settings for pushing Zeek Packages are:

ZKG and Microsensor

Pushing a package bundle to a Microsensor uses SCP and requires a path to place the bundle. After Corelight-update
pushes a package bundle, it uses ZKG on the sensor to install the packages.

For details on how to install and setup ZKG on a Microsensor, see Zeek Package Manager (ZKG)

4.7.11.1 Create and push a package bundle

To create and push a package bundle:
1. Enable package_management in the policy configuration.
Set the name of the manifest file. For example, manifest_file: bundle.manifest
Place a manifest file in the policy configuration folder.
Set push_package_bundle: true in the policy.

Ensure bundle: true in the inventory file for the desired sensors.

AN U T

If the manifest file changes, a new bundle will automatically be created and pushed each time the Corelight-update
service runs.

* Optionally, force create and push a bundle with the CLI command corelight-update -b <policy
name>

66 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

4.7.11.2 Push external package bundles

To push a package bundle created outside of Corelight-update:
1. Disable package_management in the policy configuration
2. Set the name of the bundle. For example, bundle_name: corelight.bundle
3. Place the package bundle in the global-bundle or local-bundle folder
* A package bundle in 1local-bundle takes precedence
4. Set push_content: package_bundle: true in the policy
5. Ensure bundle: true in the inventory file for the desired sensor

6. External bundles are not automatically pushed to sensors. They must be pushed with the CLI command
corelight-update -b <policy name>

4.7.12 SentinelOne

The SentinelOne integration will download data about hosts, and any CVE data. It fetches hosts known to SentinelOne,
using the Agents and Network Discovery API, or Rouges API. The Agents API will collect host data from its network
interfaces for the “secured” hosts. The Network Discovery (Rangers) API will be utilized for the “unsupported”,
“unknown”, and “unsecured” hosts. If Network Discovery is not enabled, the integration will utilize the Rogues APIL.
For CVE data collection, the Application Management Risks endpoint will be utilized.

Once downloaded, the data will be used to create two separate Input Framework files. One file includes CVE informa-
tion, and the other contains Host information. These files can be used by Zeek scripts to generate new logs, or enrich
existing logs, such as the known_hosts.log or suricata_corelight.log.

The input file will be published with any other input files from other integrations (if there are any). If “input” in enabled
in the “push_content” settings, the file will automatically get pushed to the Fleet Manager policy and/or all sensors in
the policy. See Push content settings for more details.

If the ‘interval_hours’ is set to O, the integration will attempt to download additional content each time the Corelight-
update service runs. See Configuration settings

4.7.12.1 Settings

4.7. Third-party integrations settings © 2015-2025 Corelight 67

Corelight-update, Release 1.14.1

4.7.12.2 Hosts Input file

The input file contains the following information (if it’s available):

L]

IP address (required)
MAC address
Hostname

Host Unique ID

OS version

OS Type

Endpoint status
Machine domain
Machine Type
Description

Endpoint information source (required)

If the data source is SentinelOne Agents data, the Host Unique ID comes from Agent data’s 'uuid' field.
When using SentinelOne Rouges data, the host_uid comes from Rouges data’s 'id' field. When using
SentinelOne Network Discovery data, the host_uid comes from Network Discovery data’s 'id' field.

The following is a sample input file created by this integration, using tab-separated values.

(continues on next page)

68

© 2015-2025 Corelight

Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

(continued from previous page)

4.7.12.3 CVE Input file

The input file contains the following information (if it’s available):
 IP address (required)
* Hostname
* Host Unique ID
* Machine domain
* OS version
* Endpoint information source (required)
e CVE list

If the data source is SentinelOne Agents data, the Host Unique ID comes from Agent data’s 'uuid' field.
When using SentinelOne Rouges data, the host_uid comes from Rouges data’s 'id' field. When using
SentinelOne Network Discovery data, the host_uid comes from Network Discovery data’s 'id"' field.

The following is a sample input file created by this integration, using tab-separated values.

(continues on next page)

4.7. Third-party integrations settings © 2015-2025 Corelight 69

Corelight-update, Release 1.14.1

(continued from previous page)

Attention: The integration only creates the Input Framework files to be loaded on sensors. Additional Zeek
scripts are required to be loaded on the sensors to use this data. If you enable these integrations, Corelight-update
will upload the input files to the sensor. But if the desired script isn’t available on the sensor, the input data won’t
be used.

See Zeek package management for information about using Corelight-update to manage Zeek package bundles.

See Zeek-Endpoint-Enrichment for an example of a Zeek package that can use this data.

4.7.13 STIX/TAXII

The STIX/TAXII integration will download all requested indicators at each interval from the configured TAXII server.

This integration supports STIX version 2.1 and TAXII version 2.1, as provided by services like OpenTAXII.

Note: This integration was tested using OpenTAXII with TAXII version 2.1 and STIX version 2.1.

4.7.13.1 Supported Indicators

The supported indicator types are: IP Address (IPv4 & IPv6), Domain, URL, Email, FileName, FileHash (MD5, SHA-
1, SHA-256), and UserName.

Example patterns for the supported indicator types:

ipvd-addr:value = '111.222.3.444"

ipv6-addr:value '2001:0000: 130F:0000:0000:09C0:876A:130B'

domain-name:value = 'malicious-domain.com'
url:value = 'http://malicious-site.com'
email-addr:value = 'phishing@example.com'
file:name = 'malware.exe'

file:hashes.MD5 = '2D3D5C19A771A3606019C8ED1CD47FB5"

file:hashes.'SHA-1' = 'C20C26D9F4F9BFF3CF4C29B5C1C30252D938EDDB'
file:hashes. 'SHA-256"' = '7£3d74d47b9fdbaaa9c9d3c8d5d1d®eb1918felbbaadfcb9bb3a®8db6b98b25¢"
user-account:account_login = 'Peter'

70

© 2015-2025 Corelight Chapter 4. Policy configuration

https://opentaxii.readthedocs.io/en/stable/

Corelight-update, Release 1.14.1

4.7.13.2 Settings

* username (Optional) For basic authentication when not using an access_token.

* encrypted_password (Optional) For basic authentication when not using an access_token. Use the
Corelight-update CLI command with the in encrypt switch to encrypt the password string. When using special
characters in your password string, wrap it in quotes. See CLI commands for more details.

* access_token Authentication using an access token. You must provide either an access_token, or credentials
for basic authentication using the username and encrypted_password settings.

e If interval_hours is set to 0, the integration will attempt to download additional content each time the
Corelight-update service runs. See Configuration settings

The following is a sample input file created by this integration, using tab-separated values.

(continues on next page)

4.7. Third-party integrations settings © 2015-2025 Corelight 71

Corelight-update, Release 1.14.1

(continued from previous page)

4.7.13.3 Intel log

This integration will enrich the intel.log with content like the following:

If the ExtendIntel Zeek package is loaded, the intel.log will be enriched with additional content like the following:

Note: An indicator might not include all fields.

72 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

4.7.14 Tenable

Tenable integration collects vulnerability data of systems, networks and applications using Tenable’s Vulnerability
Management solutions, Tenable.SC and Tenable.IO.

Tenable.SC (On-Prem) and Tenable.JO (Cloud based) integration helps collect data about all hosts, including their
associated CVEs. The collected data is used to track changes in the network and Vulnerability data of assets over time
and will used by Zeek scripts to enrich logs.

4.7.14.1 Tenable.sc

The configuration required for Tenable Security Center is minimal.
* Each severity and pluginType must be listed.
* Provide the host address and port of the local TenableSC instance.
There is no need to set the integration interval more frequently than the frequency Tenable.SC is scanning the network.

If the interval_hours is set to 0, the integration will attempt to download additional content each time the Corelight-
update service runs. See Configuration settings

Once downloaded, this data will be used to create an Input Framework file that can be used by a Zeek script to generate
new logs, or enrich existing logs, such as the suricata_corelight.log.

The input file will be published with any other input files from other integrations (if there are any). If “input” is enabled
in the “push_content” settings, the file will automatically get pushed to the Fleet Manager policy and/or all sensors in
the policy. See Push content settings for more details.

Attention: The Nessus (Tenable Security Center) user you're using to provide an access_key and secret_key
must have Security Management rights. It is not recommended to use an admin user.

Settings

4.7. Third-party integrations settings © 2015-2025 Corelight 73

Corelight-update, Release 1.14.1

Input file

The input file contains the following information (if it’s available):
* [P address (required)
* Hostname
* Host Unique ID: Provided by the vulnerability details response data’s 'uuid' field.
* Machine domain
* OS version
» Endpoint information source (required)
¢ Customer ID
* CVE list

The following is a sample input file created by this integration, using tab-separated values.

Attention: The Tenable.SC integrations only create Input Framework files to be loaded on sensors. Additional
Zeek scripts are required to be loaded on the sensors to use this data. If you enable these integrations, Corelight-
update will upload the input files to the sensor. But if the desired script isn’t available on the sensor, the input data
won’t be used.

See Zeek package management for information about using Corelight-update to manage Zeek package bundles.

See Zeek-CVE-Enrichment for an example of a Zeek package that can use this data.

4.7.14.2 Tenable.io

The TenableIO CVE integration will download data about all hosts with CVE’s that match the provided criteria. It
fetches CVEs known to Tenable, using its Vulnerability Management API. If the ‘interval_hours’ is set to 0, the inte-
gration will attempt to download additional content each time the Corelight-update service runs. See Configuration
settings

Once downloaded, this data will be used to create an Input Framework file that can be used by Zeek scripts to enrich
logs, such as the notice or suricata_corelight.log.

The input file will be published with any other input files from other integrations (if there are any). If “input” is enabled
in the “push_content” settings, the file will automatically get pushed to the Fleet Manager policy and/or all sensors in
the policy. See Push content settings for more details.

74 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

Settings

Input file

The input file contains the following information (if it’s available):

The following is a sample input file created by this integration, using tab-separated values.

IP address (required)

Hostname

Host Unique ID: Provided by the export vulnerabilities Chunk data’s 'uuid’' field.
Customer ID

Criticality

Machine domain

OS version

Endpoint information source (required)

CVE list

(continues on next page)

4.7. Third-party integrations settings © 2015-2025 Corelight

75

Corelight-update, Release 1.14.1

(continued from previous page)

Attention: The Tenable.IO integrations only create Input Framework files to be loaded on sensors. Additional
Zeek scripts are required to be loaded on the sensors to use this data. If you enable these integrations, Corelight-
update will upload the input files to the sensor. But if the desired script isn’t available on the sensor, the input data
won’t be used.

See Zeek package management for information about using Corelight-update to manage Zeek package bundles.

See Zeek-CVE-Enrichment for an example of a Zeek package that can use this data.

4.7.15 ThreatQ - Zeek export

These steps explain how to export Zeek indicators for use with an external threat detection system. Follow these
instructions in the ThreatQ platform to export your data.

1. Select the Settings icon > Exports.
The Exports page appears with a table listing all exports in alphabetical order.
2. Click Add New Export.
The Connection Settings dialog box appears.
3. Enter an Export Name.
4. Click Next Step.
The Output Format dialog box appears.

5. Provide the following information:

FIELD VALUE

Which type of information would you like to export? Indicators

Output Type text/plain

Special Parameters indicator.status=Active&indicator.deleted=N

Note: You can edit the output format. This includes the ability to remove unwanted indicator types.

76 © 2015-2025 Corelight Chapter 4. Policy configuration

Corelight-update, Release 1.14.1

6. Under Output Format Template, enter:

7. Click Save Settings.
8. Under On/Off, toggle the switch to enable the export.

When finished, use the URL to download the intel data in Zeek format.

Attention: Some integrations, such as Tenable.sc, CrowdStrike Exposure Management, and icannTLD require an
additional Zeek script to be loaded on the sensors. See Zeek package management. If you enable the integration,
Corelight-update will upload the input file to the sensor. But if the required script isn’t available on the sensor, the
input data won’t be used.

4.7. Third-party integrations settings © 2015-2025 Corelight 77

CHAPTER
FIVE

REFERENCES

5.1 Internal References

5.1.1 CLI commands

Warning: When updating from a full or partial configuration, any config section provided must have all none-zero
fields provided. Any missing fields will be updated to their zero value.

5.1.1.1 CLI help output

To view the available CLI Commands, use corelight-update -h

(continues on next page)

78 © 2015-2025 Corelight

Corelight-update, Release 1.14.1

(continued from previous page)

(continues on next page)

5.1. Internal References © 2015-2025 Corelight 79

Corelight-update, Release 1.14.1

(continued from previous page)

5.1.2 Corelight-update service

When Corelight-update is installed, in addition to a corelight-update.service, a system user and group are auto-
matically created. The service runs as the system user corelight-update. However, it’s disabled by default. To run
Corelight-update as a service, enable the service and start it.

1. Enable the service:

2. Start the service:

3. To view the status of the service:

4. To monitor the logs from the service: The -£ option makes the command follow the log until it’s canceled.

5.1.3 Using a proxy with Corelight-update

If the Corelight-update host requires use of a network proxy to access, download, or push content to devices, you can
configure the Corelight-update host service or user session to provide the proxy location using the operating system
(OS) environment variables: HTTP_PROXY, HTTPS_PROXY and NO_PROXY (or the lowercase versions thereof). HTTPS_
PROXY takes precedence over HTTP_PROXY for https requests.

5.1.3.1 Update the service definition

When running Corelight-update as a service, it will automatically use the HTTP_PROXY, HTTPS_PROXY and NO_PROXY
(or the lowercase versions thereof) OS environment variables when set. The proxy location can be added to the service
definition.

Update the service definition using override.conf.

1. Use systemctl to create an override.conf.

2. Create a [Service] section in the override. conf, and set the HTTPS_PROXY environment variable. For ex-
ample:

3. Save the changes. You can review the override.conf in the path /etc/systemd/system/
corelight-update.service.d

4. Reload systemd.

80 © 2015-2025 Corelight Chapter 5. References

Corelight-update, Release 1.14.1

5. Restart the Corelight-update service.

5.1.3.2 Update the user environment
The options to set a proxy can vary based on the OS distribution being used. Corelight-update will automatically use
the HTTP_PROXY, HTTPS_PROXY and NO_PROXY (or the lowercase versions thereof) environment variables when set.
In general, you can set the proxy environment variables at the host and user level.

* In Red Hat, update /etc/profile to set the proxy at the host level for users.

* In Ubuntu, update /etc/environment to set the proxy at the host level for users.

* For user accounts, update the user’s shell profile to set the proxy.

For example:

5.1.4 Order of operations

The order of operations for every interval starts with:
1. Read the global policy configuration and each individual policy configuration.
2. Process the global tasks.

3. Process each policy, and push content for that policy.

5.1.4.1 Process global tasks

See Configuration settings for configuration options.
1. Process enabled integrations.
2. Download remote Suricata config files and store the in /etc/corelight-update/global/.
3. Download new content and update the Global Source Cache.

4. Remove content from the global cache for sources that are no longer configured.

5.1. Internal References © 2015-2025 Corelight 81

Corelight-update, Release 1.14.1

5.1.4.2 Process policy tasks

See Policy configuration for configuration options

1. Copy local suricata rulesets from /etc/corelight-update/configs/<policy>/local-suricata/ to the
working directory.

2. Copy global suricata rulesets from /etc/corelight-update/global/global-suricata/ to the working
directory.

3. Copy local intel files from /etc/corelight-update/configs/<policy>/local-intel/ to the working
directory.

Copy global intel files from /etc/corelight-update/global/global-intel/ to the working directory.
Remove content from the policy cache for sources that are no longer configured.

Download new content from policy sources.

N o s

Add default Input files to /etc/corelight-update/configs/<policy>/local-input/ (if enabled - only
runs once)

8. Copy local YARA files from /etc/corelight-update/configs/<policy>/local-yara/ to the working
directory.

9. Copy global YARA files from /etc/corelight-update/global/global-yara/ to the working directory.
10. Process enabled integrations based on their intervals. See Third-party integrations settings
11. Process Input files and update the statefile.
12. Process Suricata rulesets.
1. Collect ruleset files
1. Collect new source content and copy it to the suricata working directory.
* Check the global cache first.
* If not in the global cache, download new content directly and update the policy level cache.

2. Check for global .rules or .rules.tar.gz files in /etc/corelight-update/global/
global-suricata/ and extract/copy them to the suricata working directory.

3. Check for local .rules or .rules.tar.gz files in /etc/corelight-update/configs/
<policy>/local-suricata/ and extract/copy them to the suricata working directory.

2. Merge all of the rulesets into a single ruleset, ignoring any ruleset file identified with File filters in the
following:

* Corelight recommended disable.conf (if enabled)

* global disable.conf (if it exists)

* policy disable.conf (if it exists)
If enabled, process Corelight recommended disable.conf, enable.conf and modify.conf files in that order.
If they exist, process global disable.conf, enable.conf and modify.conf files in that order.
If they exist, process policy disable.conf, enable.conf and modify.conf files in that order.

If enabled, extract selected atomic rules from the Suricata ruleset and generate a Zeek Intel file.

A

If enabled and Suricata is installed on the same host, test the new ruleset with Suricata in test mode (see
Suricata configuration for details).

8. Publish the new Suricata ruleset - suricata.rules.

82 © 2015-2025 Corelight Chapter 5. References

Corelight-update, Release 1.14.1

13. Process Intel files

L.

4.

Check for global intel files in /etc/corelight-update/global/global-intel/, and copy them to the
intel working directory.

Check for local intel files in /etc/corelight-update/configs/<policy>/local-intel, and copy
them to the intel working directory.

. Evaluate all of the global, local, and integration intel files from all sources. If disable.intel is available,

evaluate and remove indicators. Merge and dedupe results into a single file.

Publish the new intel file - intel.dat

14. Process YARA files

L.

Check for global YARA files in /etc/corelight-update/global/global-yara/, and copy them to
the yara working directory.

. Check for local YARA files in /etc/corelight-update/configs/<policy>/local-yara, and copy

them to the yara working directory.

. Evaluate all of the global, local, and integration YARA files from all sources. Merge and dedupe results

into a single file.

. Publish the new YARA file - yara_rules.yar

5.1.4.3 Push content for policies

1

2
3
4
5

Corelight-update deploys content updates in a specific order:

Push new Intel files.

Push new Suricata ruleset.

Push new Zeek Package bundle.
Push new YARA source

Push new Input files

By default, Corelight-update will push updates to the sensors concurrently. Corelight-update will open a
connection to multiple sensors in a policy, push updated content, and cycle to the next sensor, up to the
global configuration setting parallel_push_limit. See Configuration settings.

Tip: Corelight-update only attempts to push new content to sensors. You can manually force
a push of all existing content to a group of sensors using the CLI commands.

5.1.5 Build test process

Corelight-update is currently tested with Docker to ensure it successfully installs on the following operating systems:

* image: centos:7

image: rockylinux:8
image: rockylinux:9
image: registry.access.redhat.com/ubi8/ubi

image: debian:10

5.1.

Internal References © 2015-2025 Corelight 83

Corelight-update, Release 1.14.1

image: debian:11

image: ubuntu:18.04

image: ubuntu:20.04

image: ubuntu:22.04

image: ubuntu:22.04 (arm64)

image: amazonlinux:2

5.1.6 System requirements

The minimum system requirements are:

An x86_64 or ARM64 processor.

4 GB memory.

A host running a Linux OS.

Network connectivity to the Internet, or to an internal-facing threat intelligence data repository.

To push content to your sensors, or to Fleet Manager, network connectivity to the management interface is re-
quired.

5.1.7 Commonly used Suricata rulesets

Any source that can be downloaded in the standard Suricata ruleset format, and does not require authentication, can be
added to the list of sources. Here is a list of common Suricata ruleset sources. Just verify the URL, modify as needed,
and add it to your list of sources.

Corelight Labs Suricata Rules: https://feed.corelight.com/rules/corelight.rules
ET/Open: https://rules.emergingthreats.net/open/suricata-6.0/emerging.rules.tar.gz

ET/Pro: https://rules.emergingthreatspro.com/<insert-et-pro-key-here>/suricata-7.0.3/
etpro.rules.tar.gz

This ruleset applies to Suricata 7.0.3, which was added in Corelight Sensor v27.11.
oisf/trafficid: https://openinfosecfoundation.org/rules/trafficid/trafficid.rules

ptresearch/attackdetection: https://raw.githubusercontent.com/ptresearch/AttackDetection/
master/pt.rules.tar.gz

scwx/enhanced: https://ws.secureworks.com/ti/ruleset/<insert-secret-code-here>/
Suricata_suricata-enhanced_latest.tgz

scwx/malware: https://ws.secureworks.com/ti/ruleset/<insert-secret-code-here>/
Suricata_suricata-malware_latest.tgz

scwx/security: https://ws.secureworks.com/ti/ruleset/<insert-secret-code-here>/
Suricata_suricata-security_latest.tgz

sslbl/ssl-fp-blacklist: https://sslbl.abuse.ch/blacklist/sslblacklist.rules
sslbl/js3-fingerprints: https://sslbl.abuse.ch/blacklist/ja3_fingerprints.rules
etnetera/aggressive: https://security.etnetera.cz/feeds/etn_aggressive.rules

tgreen/hunting: https://raw.githubusercontent.com/travisbgreen/hunting-rules/master/
hunting.rules

84

© 2015-2025 Corelight Chapter 5. References

Corelight-update, Release 1.14.1

e malsilo: https://malsilo.gitlab.io/feeds/dumps/malsilo.rules.tar.gz

5.1.8 Administering encrypted passwords

Fleet and individual sensor passwords should be encrypted before they are stored in inventory. Using the encrypted_
pass field allows you to replace the use of plain text passwords in your Corelight-update configuration file.

To use encrypted passwords:

1. Use the Corelight-update CLI command with the in encrypt switch to encrypt the password string. When using
special characters in your password string, wrap it in quotes. See CLI commands for more details.

2. Copy the encrypted password output from the console, and use it to update the encrypted_pass: field of the
sensor inventory record, or Fleet configuration in the policy configuration file.

3. Verify the password: field of the sensor inventory record, or Fleet configuration is empty.

4. Save the changes, and update the Corelight-update policy.

Note: A Fleet Manager configuration or sensor inventory record should not have both the password and encrypted_
pass fields populated. Make sure to leave the password field blank when using the encrypted_pass field. If both
fields are populated, the password field will be used.

Using the Corelight-update CLI command with the in encrypt switch encrypts the password string using AES256
encryption. The encryption master key is randomly generated, and stored in the file /var/corelight-update/.
corelight-update.

If the master key is removed and regenerated, all encrypted passwords will also have to be regenerated. A password
must be encrypted with the current key to be decrypted successfully.

To generate a new master key, delete the existing key, and a new one will automatically be created when needed.

5.2 Zeek package references

5.2.1 Extendintel

The ExtendIntel Zeek package enriches the intel.log with additional data (if available).
If the intel file contains the following fields, the data will automatically be added to the intel.log.

* threat_score

* verdict

¢ verdict_source

* confidence

* desc

* lastseen

* firstseen

e url

* reports

* campaigns

5.2. Zeek package references © 2015-2025 Corelight 85

Corelight-update, Release 1.14.1

e associated

* category

5.2.1.1 Intel log

This is an example of an intel.log without any additional data:

If the ExtendIntel Zeek package is loaded, the intel.log will be enriched with additional content like the following: (all
indicators will not have all fields)

(continues on next page)

86 © 2015-2025 Corelight Chapter 5. References

Corelight-update, Release 1.14.1

(continued from previous page)

5.2.2 Zeek-CVE-Enrichment

The Zeek-CVE-Enrichment Zeek package uses an input file named “cve_data.tsv” that contains known CVE informa-
tion about hosts within an environment, to enrich the suricata_corelight.log and/or the notice.log. The information can
come from multiple sources, including a manually created file.

The package works by monitoring every suricata_corelight and notice log entry for CVE alerts.
1. When a suricata_corelight event is triggered, the script will search the suricata alert metadata for a CVE ID.
1. If no CVE ID is found in the metadata, it will then search the Suricata signature name for the CVE ID.
2. When a notice event is triggered, the script will search the message (“msg”) part of the Notice log for a CVE ID.
1. If no CVE ID is found in the “msg”, the script will search the “note” section of the Notice log event.

3. If a CVE ID is found in any location, for either log, the script will look up the host IP address in the “cve_data”
table.

1. If the host is found, the CVE ID found in the log is compared to the list of known CVE’s for that host.
1. If a match is found, the relevant log is enriched with additional information from the table.

As long as the input file is named “cve_data.tsv”, and has a match to a CVE alert in a suricata_corelight.log or notice.log,
the log will be enriched with additional data.

5.2.2.1 Input file (cve_data.tsv)

The input file should contain the following information (if it’s available):
* IP address (required)
* Hostname
* Endpoint information source (required)
* Endpoint criticality
* Endpoint Unique ID
 Customer ID
* Machine domain
* OS version
* CVE list

The following is a sample input file created by this integration, using tab-separated values.

(continues on next page)

5.2. Zeek package references © 2015-2025 Corelight 87

Corelight-update, Release 1.14.1

(continued from previous page)

5.2.2.2 suricata_corelight log

A typical suricata_corelight.log provides content similar to this example:

(continues on next page)

88 © 2015-2025 Corelight Chapter 5. References

Corelight-update, Release 1.14.1

(continued from previous page)

If the Zeek package Zeek-CVE-Enrichment is loaded, the suricata_corelight.log and/or the notice.log will be enriched
with additional content provided by the integration, similar to this example:

Note: Field names begin with “orig” or “resp” to identify which host is referenced.

5.2.3 Zeek-Endpoint-Enrichment

The Zeek-Endpoint-Enrichment Zeek package uses the input file “hosts_data.tsv” to enrich multiple logs with relevant
data. Depending on the data provided in the “hosts_data.tsv” file and the options enabled, this package can enrich the
following logs:

¢ known_devices
¢ known_domains
¢ known_hosts
¢ known_names
 conn (optional)

« all logs (optional)

Note: Additional fields will only be created if the relevant data is available.

5.2.3.1 Input file (hosts_data.tsv)

The input file contains the following information (if available):
[P address (required)
* MAC address
* Hostname
* Endpoint information source (required)
» Endpoint criticality

* Endpoint status

5.2. Zeek package references © 2015-2025 Corelight 89

Corelight-update, Release 1.14.1

Endpoint Unique ID
Customer ID

OS version
Machine domain

Description

For example, this is a sample input file created by this integration, formatted using tab-separated values.

5.2.3.2 known_hosts log

The known_hosts log will always be enriched (with available data) for local hosts.

For example, a known_hosts.log can contain “endpoint” data similar to the sample below:

(continues on next page)

90

© 2015-2025 Corelight

Chapter 5. References

Corelight-update, Release 1.14.1

(continued from previous page)

5.2.3.3 known_devices log

The known_devices entry will only be created if the MAC is available. For example, a known_devices.log can contain
content similar to the sample below:

5.2. Zeek package references © 2015-2025 Corelight 91

Corelight-update, Release 1.14.1

5.2.3.4 known_domains log

The known_domains entry will only be created if the “Machine Domain” is available. For example, a known_
domains.log can contain content similar to the sample below:

5.2.3.5 known_names log

The known_names entry will only be created if the hostname is available. For example, a known_names.log can contain
content similar to the sample below:

92 © 2015-2025 Corelight Chapter 5. References

Corelight-update, Release 1.14.1

5.2.3.6 conn log

If enabled, a typical conn.log can contain content similar to the sample below:

Note: Information related to “orig” or “resp” could come from different sources.

(continues on next page)

5.2. Zeek package references © 2015-2025 Corelight 93

Corelight-update, Release 1.14.1

(continued from previous page)

5.2.3.7 all logs

If enabled, any log with an “id.xxx” field can contain content similar to the sample below:

Note: Information related to “orig” or “resp” could come from different sources.

5.2.4 Zeek-Endpoint-Enrichment-conn

The Zeek-Endpoint-Enrichment-conn Zeek package is an options package used with the Zeek-Endpoint-Enrichment
to enable enrichment of the conn.log. It is a single line that enables the “EndpointEnrichment::extra_logging_conn”
option.

Attention: This package requires Zeek-Endpoint-Enrichment

94 © 2015-2025 Corelight Chapter 5. References

Corelight-update, Release 1.14.1

5.2.5 Zeek-Endpoint-Enrichment-all

The Zeek-Endpoint-Enrichment-all Zeek package is an options package used with the Zeek-Endpoint-Enrichment to
enable enrichment of all logs. It is a single line that enables the “EndpointEnrichment::extra_logging_all” option.

Attention: This package requires Zeek-Endpoint-Enrichment

5.3 Third-party configuration guides

5.3.1 Zeek Package Manager (ZKG)

5.3.1.1 Quickstart guide

These instructions are intended for installations of ZKG on the same host as a Software Sensor.

5.3.1.2 Dependencies

e Python 3.6+

e git: https://git-scm.com

e GitPython: https://pypi.python.org/pypi/GitPython

e semantic_version: https://pypi.python.org/pypi/semantic_version
* btest: https://pypi.python.org/pypi/btest

Note that following the ZKG installation process via pip3 will automatically install its dependencies for you.

5.3.1.3 Installation

It is recommended to use the latest version of pip3:

To install the latest release of ZKG on PyPi:

5.3.1.4 Basic setup

ZKG supports four broad approaches for managing Zeek packages. These details represent one of those approaches
and are specific for a Corelight Software Sensor running as root.

1. Create the directory for the ZKG configurations.

2. Create/Edit the file /root/.zkg/config and add the following contents:

5.3. Third-party configuration guides © 2015-2025 Corelight 95

https://git-scm.com
https://pypi.python.org/pypi/GitPython
https://pypi.python.org/pypi/semantic_version
https://pypi.python.org/pypi/btest

Corelight-update, Release 1.14.1

3. Run the following command to refresh the Zeek index and create the /etc/corelight/packages directory.

4. Edit /etc/corelight/local.zeek and add the following line:

5.3.1.5 Usage

Corelight-update will use ZKG to manage package bundles on a Software Sensor.

Check the output of zkg —help for an explanation of all available functionality of the command-line tool.

96 © 2015-2025 Corelight Chapter 5. References

https://docs.zeek.org/projects/package-manager/en/stable/zkg.html#zkg

CHAPTER
SIX

CORELIGHT-UPDATE RELEASE NOTES

6.1 v1.14.1 (March 2025)

6.1.1 Enhancements

* Added support for Axonius returning random data types.
* Renamed software sensor to microsensor in the configuration inventory settings.

* Removed support for importing pre 1.0 configurations.

6.2 v1.14.0 (March 2025)

6.2.1 Enhancements

* Added support for STIX/TAXII Intel integration.

¢ Added support for Analystl Suricata integration.

* Added support for Analyst] YARA integration.

* Added support for Analystl Intel integration.

* Added support for adding YARA source on Fleet Manager.

* Added YARA policy source to download preformatted YARA rule file.

* Added support for CrowdStrike YARA rules integration.

* Added support to collect endpoint type and OS from SentinelOne Host integration.

¢ Added support for adding Suricata source on Fleet Manager, if Suricata Automation is enabled.

6.2.2 Bug fixes

* Fixed a bug related to Intel source creation.

Added a default value for the request limit in integrations where it was not applied.
* Fixed a bug related to proxy settings.

* Fixed a bug related to missing Suricata logs.

© 2015-2025 Corelight 97

Corelight-update, Release 1.14.1

6.3 v1.13.1 (January 2025)

6.3.1 Enhancements

* Added a log message instead of throwing an error when no new Suricata files are available for upload.

6.3.2 Bug fixes

* Fixed a bug related to endpoint status field for MS Defender.

6.4 v1.13.0 (November 2024)

6.4.1 Enhancements

* Added support for Microsoft Defender integration.

» Optimized Suricata policy file update in Fleet.

6.5 v1.12.0 (September 2024)

6.5.1 Enhancements

* Added support for TenableIO CVE integration.
» Updated configurations for CrowdStrike integration.

* Added cache cleanup and fallback to cached data in case of integration processing errors.

6.5.2 Bug fixes

* Fixed bug related to unreadable characters in Debug mode.

¢ Corrected field to be used in SentinelOne HostUID.

6.6 v1.11.0 (August 2024)

6.6.1 Enhancements

* Added support for Fleet Manager Intel Policies for FM 27.14 and later.

* Added support for custom source filenames for downloaded files.

Added user configurable client timeout settings for downloading files.

Updated CrowdStrike integration to use new API. Improves performance and removes 10,000 host limitation.
* Added SentinelOne Host integration.
* Added SentinelOne CVE integration.

98 ©2015-2025 Coreliféhapter 6. Corelight-update Release Notes

Corelight-update, Release 1.14.1

6.7 v1.10.1 (April 2024)

6.7.1 Enhancements

* Add optional filename for downloaded sources

6.7.2 Bug fixes

» Updated directory permissions for /opt/corelight-update/corelight-recommended.

6.8 v1.10.0 (April 2024)

6.8.1 Enhancements

* Added support for quotes in Intel and Input files.

6.8.2 Bug fixes

* Fixed a bug that limited Global Suricata config files to a single file.

6.9 v1.9.4 (March 2024)

6.9.1 Bug fixes

¢ Fixed an issue that disabled all new packages when a bundle was uploaded.

* Corrected permissions for .rpm files.

6.10 v1.9.2 (January 2024)

6.10.1 Bug fixes

* Fixed a xbit and hostbit parsing issue.

6.11 v1.9.0 (January 2024)

6.11.1 Enhancements

* Added support for Intel files in sensor policies for Fleet Manager v27.9.
* Added support for Axonius integration.
* Added additional fields to CrowdStrike CVE and Host integration.

* Added Suricata bit dependency correction feature.

6.7. v1.10.1 (April 2024) © 2015-2025 Corelight

99

Corelight-update, Release 1.14.1

* Renamed host_uid field to uid in the vulnerability and hosts integrations.

* Added cid field to the vulnerability and hosts integrations.

6.11.2 Bug fixes

* Fixed an issue with Suricata and Intel file cleanup.

6.12 v1.8.1 (September 2023)

6.12.1 Bug fixes

* Fixed the path for push published input files.

6.13 v1.8.0 (September 2023)

6.13.1 Enhancements

* Added support for Suricata policies in Fleet Manager v27.8.

* Added configuration option to specify Fleet Manager sensor policy and Suricata policy names.
* Added a feature to remove “disable” individual intel indicators.

¢ Added support for remote Input files.

* Added support to use the same Input file from multiple sources at the same time.

* Increased support for pushing in parallel to Fleet Manager managed sensors.

* Added support to auto replace autoupdate policy config files when the database structure changes.

6.14 v1.7.3 (August 2023)

6.14.1 Enhancements

* Added additional fields to the CrowdStrike Hosts integration.

6.15 v1.7.2 (August 2023)

6.15.1 Enhancements

* Added a network timeout variable for waiting on a status from a sensor after a file upload.

100 ©2015-2025 Coreliféhapter 6. Corelight-update Release Notes

Corelight-update, Release 1.14.1

6.15.2 Bug fixes

* Fixed a bug that caused an exit if the icannTLD integration has an error.

6.16 v1.7.1 (August 2023)

6.16.1 Enhancements

* Added a bash_completion script.

6.16.2 Bug fixes

* Fixed a bug so checking the status of an uploaded file through Fleet Manager uses a bearer token.

* Adding a new user in RPM based OS’s adds a ‘/sbin/nologin’ shell.

6.17 v1.7.0 (July 2023)

6.17.1 Enhancements

* Added a new integration for Crowdstrike Exposure Management CVE.

* Added a new integration for Crowdstrike Exposure Management Hosts.

6.18 v1.6.3 (July 2023)

6.18.1 Bug fixes

 Fixed missing network settings after upgrade issue.

6.19 v1.6.2 (June 2023)

6.19.1 Enhancements

* Improved logging output to log when a download attempt is intercepted by an external proxy.
* Added support to configure network settings for sensor communications.
* Added the following new CLI options:

— show -network

— update -network-setting [settingl=valuel setting2=value2 ...
settingN=valueN]

— update -network-settings [settingl=valuel setting2=value2 ...
settingN=valueN]

6.16. v1.7.1 (August 2023) © 2015-2025 Corelight

101

Corelight-update, Release 1.14.1

6.19.2 Bug fixes

» Fixed a bug that caused sensor traffic to use the same proxy configuration as download traffic.
 Improved error output when updating policy configurations.

* Fixed a bug that compared suricata config files before they are downloaded.

6.20 v1.6.1 (May 2023)

6.20.1 Enhancements

* Added support to prevent policies from being created if the name begins with a -.

6.20.2 Bug fixes

* Fixed an issue that prevented downloading intel sources for a policy without any suricata sources.

6.21 v1.6.0 (March 2023)

6.21.1 Enhancements

* Added a global option to auto-update policies each time the service runs.

* Added a global setting to push content to sensors in parallel (defaults to 10).

6.22 v1.5.0 (February 2023)

6.22.1 Enhancements

* Added support for uploading Suricata configurations to all sensors.
* Added support for pushing signed package bundles to all sensors, except Microsensors.

* Added support for the new CSRF requirement in the Fleet Manager v27.3 APL

6.23 v1.4.1 (February 2023)

6.23.1 Bug fixes

* Fixed an issue where empty options were written to Suricata rules.

* Fixed an issue where an empty “If-Modified-Since” header is used during file downloads.

102 ©2015-2025 Coreliféhapter 6. Corelight-update Release Notes

Corelight-update, Release 1.14.1

6.24 v1.4.0 (January 2023)

6.24.1 Enhancements

* Added a new integration for Mandiant Threat Intelligence.

* If Fleet Manager details are configured, and a matching policy exists, the Fleet Manager policy will be updated
even if no sensors are assigned to it.

e Added the following new CLI options:

add -policy and add -policies are interchangeable.

remove -policy and remove -policies are interchangeable.

-file and -path are interchangeable on all relevant CLI commands.

Most of the Global configuration settings can be updated directly from the CLI:

* update -global-setting [settingl=valuel setting2=value2 ...
settingN=valueN]

% update -global-settings [settingl=valuel setting2=value2 ...
settingN=valueN]

* Added “basic” auth support for sources.
¢ Added support for pulling Global Suricata config files from remote sources.
— Includes support for no auth, basic auth, and token auth.
* Added support for pulling Policy Suricata config files from remote sources.
— Includes support for no auth, basic auth, and token auth.
* Added the ability to append content to the Metadata and Other fields using modify.conf.
* Added the ability to identify rules with Metadata contains string.
* Added the option to include disabled Suricata rules in the ruleset file.

 Simplified the global configuration by removing the global integration table. Each integration is now enabled
using its own settings.

e The update -policycommand now uses a transaction. If any part of the update fails, the update is not applied.

* Removed the config templates (obsolete). The import -policy <policy name> -file <path to
config file> can be used to the same config to different policies.

* Removed the policy backup functions (obsolete). The show -policy <policy name> -file <path to
save config file> can be used to save a backup.

6.24.2 Bug fixes

* Fixed a issue where package bundles were not created with other:read permissions on all files, causing pack-
ages not to load on sensors.

* Pushing package bundles now updates a Fleet Policy instead of trying (and failing) to push through Fleet to the
Sensors.

6.24. v1.4.0 (January 2023) © 2015-2025 Corelight 103

Corelight-update, Release 1.14.1

6.25 v1.3.0 (November 2022)

6.25.1 Enhancements
* Fleet managed sensors no longer have to be listed in the inventory section of the policy. The list will automatically
be pulled from Fleet Manager.
* Added support for AlienVault OTX.
Added configurable URL for ICANNTLD.

* The Integration table has been removed, each integration is now enabled within it’s configuration.

6.26 v1.2.1 (November 2022)

6.26.1 Enhancements

¢ Added a basic web menu to the root of the webservice.

6.26.2 Bug fixes

* Fixed a bug that would cause a policy to fail if no intel files were present.

* Added a redirect to the webservice if the trailing slash is missing for \docs\ or \files\.

6.27 v1.2.0 (October 2022)

6.27.1 Enhancements

» Added support for global cache and policy level Intel sources that can be downloaded in Zeek format, like
ThreatQ.

¢ Added support for Token authenticated Suricata and intel sources like MISP.

» Updated the web service to use TLS version 1.2+ and removed outdated cipher suites.

6.27.2 Bug fixes

* Improved error handling with TenableSC.

TenableSC was not reading the keys from the policy in the database.

Moved the home directory for the corelight-update service account to /var/corelight-update/

* Removed the requirement for experimental features to be enabled to upload Suricata rules to Fleet.

104 ©2015-2025 Coreliféhapter 6. Corelight-update Release Notes

Corelight-update, Release 1.14.1

6.28 v1.1.0 (October 2022)

6.28.1 Enhancements

* Support for encrypted passwords for inventory items.

¢ Corelight-update now uses a umask of 8007 when creating files and directories.

6.28.2 Bug fixes

* The before-install and before-upgrade scripts will not attempt to create the system user if it already exists.

* Downloading content will now use the https_proxy or HTTPS_PROXY environment variables.

6.29 v1.0.1 (October 2022)

6.29.1 Enhancements

* Policies are stored in a Sqlite3 DB”.

* The Corelight-update service now runs as corelight-update and not root.

 After install or upgrade, all files are owned by system user corelight-update:corelight-update.
 All users must belong to the corelight-update user group to run Corelight-update.

* Global configuration can be updated from either a yaml or json config file.

* Policies configurations can be imported or updated from either a yaml or json config file.

» Sources that do not require authentication can be added as type “suricata” or “intel”.

* A Global Source Cache is automatically created.

¢ Integration intervals are now referenced in hours See Third-party integrations settings for details.
* The interval for processing policies is now referenced in minutes See Configuration settings for details.
* The web Service no longer requires root privileges to enable ports below 1024.

¢ Pushing Suricata rulesets to Fleet managed sensors no longer proxies that push through Fleet.
It uploads the ruleset to Fleet and updates the Fleet policy to use the new ruleset.

* When pushing content to sensors, an inventory file is no longer used.
The sensor details are part of the policy config.

» Missing configuration files are automatically recreated.

6.28. v1.1.0 (October 2022) © 2015-2025 Corelight

105

Corelight-update, Release 1.14.1

6.29.2 Bug fixes

* Set http.Transport idelConnTimeout for Fleet to 90 seconds.

106 ©2015-2025 Coreliféhapter 6. Corelight-update Release Notes

	QuickStart - new install
	System requirements
	Installation overview
	1. Set up the Corelight stable package repository
	2. Install Corelight-update
	3. Add the corelight-update group to existing users (optional)
	4. Configure Corelight-update
	4.1 Change the policy name (optional)
	4.2 Customize a policy (optional)
	4.3 Customize global settings (optional)

	5. Add proxy configuration (optional)
	6. Run Corelight-update

	QuickStart - upgrade
	System requirements
	Upgrade overview
	Upgrade corelight-update
	Configure new Corelight-update features (optional)

	Global configuration
	Corelight-update service settings
	Web service
	Service interval

	Network communication settings
	Updating the Global network config
	Complete global network settings

	Configuration settings
	General settings
	Additional logging options
	Experimental features
	Auto-updating policy settings
	Pushing content to sensors in parallel

	Global-level data sources
	GeoIP database
	Remote data sources
	Locally managed data sources
	Local Intel folders
	Local Suricata folders
	Local Input folders
	Local YARA folders

	Global-level Suricata settings
	Updating the Global configuration
	Complete global settings

	Policy configuration
	Policy sources
	Remote source settings
	Overview of adding policy sources
	Locally managed data sources
	Local Intel folders
	Local Suricata folders
	Local Input folders
	Local YARA folders

	Processing a policy source
	Default policy sources
	Threat intelligence source example

	Third-party integrations

	Policy inventory settings
	Push content settings
	Overview of adding Fleet Manager and sensor details to the inventory
	Inventory settings
	Add Fleet-managed sensors
	Prerequisites
	Configure the Fleet Manager connection
	Deploying content to Fleet Manager

	Add standalone appliance sensors
	Add microsensors
	Using Corelight-update to update a sensor running on the same host

	Suricata configuration
	Suricata configuration files
	Disabled rules
	Ruleset testing
	Suricata policy settings
	Remote config files

	Suricata rules management
	File filters
	Rule filters
	Rule modifiers
	Legacy format and Legacy regex format
	Corelight-update regex format
	Corelight-update format

	Modify examples

	Intel management
	Intel management settings
	Disable Threat Intel indicators
	Add Threat Intel sources

	Input management
	Input management settings

	YARA management
	YARA prerequisites
	YARA management settings
	Add YARA source

	Third-party integrations settings
	Analyst1
	Analyst1 Suricata
	Settings

	Analyst1 YARA
	Settings

	Analyst1 Indicator
	Settings
	Intel log

	Axonius
	Settings
	CVE Input file
	Hosts Input file

	CrowdStrike
	Falcon Exposure Management - Hosts & CVEs
	Hosts Input file
	CVE Input file

	Falcon Suricata Ruleset
	Settings

	Falcon Threat Intelligence
	Settings
	Intel log

	Falcon YARA ruleset
	Settings

	FireEye iSIGHT Threat Intelligence
	Settings
	Intel log

	Maxmind GeoIP
	GeoIP settings
	Maxmind configuration settings

	icannTLD Zeek script
	Script functions

	Mandiant Threat Intelligence
	Settings
	Intel log

	MS Defender
	Settings
	CVE Input file
	Hosts Input file

	MISP - Zeek export
	AlienVault Open Threat Exchange
	Settings
	Intel log

	Zeek package management
	Create and push a package bundle
	Push external package bundles

	SentinelOne
	Settings
	Hosts Input file
	CVE Input file

	STIX/TAXII
	Supported Indicators
	Settings
	Intel log

	Tenable
	Tenable.sc
	Settings
	Input file

	Tenable.io
	Settings
	Input file

	ThreatQ - Zeek export

	References
	Internal References
	CLI commands
	CLI help output

	Corelight-update service
	Using a proxy with Corelight-update
	Update the service definition
	Update the user environment

	Order of operations
	Process global tasks
	Process policy tasks
	Push content for policies

	Build test process
	System requirements
	Commonly used Suricata rulesets
	Administering encrypted passwords

	Zeek package references
	ExtendIntel
	Intel log

	Zeek-CVE-Enrichment
	Input file (cve_data.tsv)
	suricata_corelight log

	Zeek-Endpoint-Enrichment
	Input file (hosts_data.tsv)
	known_hosts log
	known_devices log
	known_domains log
	known_names log
	conn log
	all logs

	Zeek-Endpoint-Enrichment-conn
	Zeek-Endpoint-Enrichment-all

	Third-party configuration guides
	Zeek Package Manager (ZKG)
	Quickstart guide
	Dependencies
	Installation
	Basic setup
	Usage

	Corelight-update Release Notes
	v1.14.1 (March 2025)
	Enhancements

	v1.14.0 (March 2025)
	Enhancements
	Bug fixes

	v1.13.1 (January 2025)
	Enhancements
	Bug fixes

	v1.13.0 (November 2024)
	Enhancements

	v1.12.0 (September 2024)
	Enhancements
	Bug fixes

	v1.11.0 (August 2024)
	Enhancements

	v1.10.1 (April 2024)
	Enhancements
	Bug fixes

	v1.10.0 (April 2024)
	Enhancements
	Bug fixes

	v1.9.4 (March 2024)
	Bug fixes

	v1.9.2 (January 2024)
	Bug fixes

	v1.9.0 (January 2024)
	Enhancements
	Bug fixes

	v1.8.1 (September 2023)
	Bug fixes

	v1.8.0 (September 2023)
	Enhancements

	v1.7.3 (August 2023)
	Enhancements

	v1.7.2 (August 2023)
	Enhancements
	Bug fixes

	v1.7.1 (August 2023)
	Enhancements
	Bug fixes

	v1.7.0 (July 2023)
	Enhancements

	v1.6.3 (July 2023)
	Bug fixes

	v1.6.2 (June 2023)
	Enhancements
	Bug fixes

	v1.6.1 (May 2023)
	Enhancements
	Bug fixes

	v1.6.0 (March 2023)
	Enhancements

	v1.5.0 (February 2023)
	Enhancements

	v1.4.1 (February 2023)
	Bug fixes

	v1.4.0 (January 2023)
	Enhancements
	Bug fixes

	v1.3.0 (November 2022)
	Enhancements

	v1.2.1 (November 2022)
	Enhancements
	Bug fixes

	v1.2.0 (October 2022)
	Enhancements
	Bug fixes

	v1.1.0 (October 2022)
	Enhancements
	Bug fixes

	v1.0.1 (October 2022)
	Enhancements
	Bug fixes

